Extending the Tools of Chemical Reaction Engineering to the Molecular Scale
Multiple-time-scale order reduction for stochastic kinetics

James B. Rawlings
Department of Chemical and Biological Engineering

March 31, 2009
Model Reduction in Reacting Flows
University of Notre Dame
Outline

1. Introduction to stochastic kinetics
2. Model reduction — fast reactions and reactive intermediates
3. Catalyst example with fast diffusion
4. Virus example with fast fluctuation
5. Further reading
Introduction to stochastic kinetics

Stochastic kinetics
- Small species populations
- Species numbers are integers, reactions cause integer jumps
- Large fluctuations in species numbers and reaction rates
- Biological networks and catalyst particles

Model reduction
Develop reduced models from stochastic chemical reactions. These models must meet the following requirements:
- Simpler than the full model (fewer reactions, fewer parameters, or faster simulation times)
- Converge to the full model as a specified parameter goes to zero
The KMC algorithm for the reaction $A \xrightleftharpoons[k_2]{k_1} B$ with $k_1 = 2$, $k_2 = 1$, $n_{A0} = 6$, and $n_{B0} = 3$ is as follows:

1. Choose which reaction
2. Choose time step
3. Repeat

KMC Algorithm

- Which reaction:
 \[\frac{r_1}{r_1 + r_2} = \frac{12}{12+3} \quad \text{or} \quad \frac{r_2}{r_1 + r_2} = \frac{3}{12+3} \]
- Time step: Sample from an exponential distribution where the distribution mean is the sum of reaction rates.
KMC simulations and probability

KMC simulations are samples of a probability distribution that evolves in time.

We can write the evolution equation for the probability density (master equation).
Chemical master equation

\[
\frac{dP(x)}{dt} = \sum_{j=1}^{N_{\text{rxn}}} r_j(x - \nu_j)P(x - \nu_j) - r_j(x)P(x)
\]

- rate into state \(x \)
- rate out of state \(x \)

\[
\frac{dP}{dt} = AP
\]

Master equation example

- \(A \xrightarrow{k_1} B \xleftarrow{k_2} \)
- \(n_{A0} = 100, n_{B0} = 0 \)
- \(k_1 = 2, k_2 = 1 \)
- 101 possible states
- 101 Coupled ODEs
Master equation — Important points

Chemical master equation

\[
\frac{dP(x)}{dt} = \sum_{j=1}^{N_{rxn}} r_j(x - \nu_j)P(x - \nu_j) - r_j(x)P(x)
\]

\[
\frac{dP}{dt} = AP
\]

- Often the dimensionality of the master equation makes direct solution infeasible
- The master equation shows what probability distribution is sampled in a KMC simulation
- A reduced master equation can lead to a new/faster simulation schemes
Kinetics of multiple time scales

\[A \xrightleftharpoons[k_{-1}]{k_1} B \xrightarrow[k_2]{1} C \]

Deterministic - One Time Scale

\[k_1 = 2, \quad k_{-1} = 0.5, \quad k_2 = 0.5 \]

KMC - One Time Scale

\[k_1 = 2, \quad k_{-1} = 0.5, \quad k_2 = 0.5 \]

Deterministic - Two Time Scales

\[k_1 = 10, \quad k_{-1} = 10, \quad k_2 = 0.5 \]

KMC - Two Time Scales

\[k_1 = 2, \quad k_{-1} = 20, \quad k_2 = 20 \]

Deterministic - Two Time Scales

\[k_1 = 10, \quad k_{-1} = 10, \quad k_2 = 0.5 \]

KMC - Two Time Scales

\[k_1 = 2, \quad k_{-1} = 20, \quad k_2 = 20 \]

One time scale
Reaction equilibrium
Reactive intermediate
Deterministic model reductions

\(x \) non-QSSA species, \(y \) QSSA species

\[
\begin{align*}
\frac{dx}{dt} &= f(x, y) \\
\epsilon \frac{dy}{dt} &= g(x, y)
\end{align*}
\]

Classical QSSA

\[
\begin{align*}
\frac{dx}{dt} &= f(x, y) \\
0 &= g(x, y)
\end{align*}
\]

- DAE reduced model

Singular Perturbation QSSA

\[
\begin{align*}
x &= X_0 + \epsilon X_1 + \epsilon^2 X_2 + O(\epsilon^3) \\
y &= Y_0 + \epsilon Y_1 + \epsilon^2 Y_2 + O(\epsilon^3)
\end{align*}
\]

- Collect like powers of \(\epsilon \)
- Equations for \(\frac{dX_0}{dt} \) is the reduced model
- Separate models for fast and slow time scale
Our objective

Apply singular perturbation analysis to develop a reduced master equation.

\[
\begin{align*}
A & \xrightleftharpoons[\kappa_{-1}]{\kappa_1} B \xrightarrow{k_2} C \\
\frac{dP(a, b, c)}{dt} &= k_1(a + 1)P(a + 1, b - 1, c) + k_{-1}(b + 1)P(a - 1, b + 1, c) \\
&\quad + k_2(b + 1)P(a, b + 1, c - 1) - (k_1a + k_{-1}b + k_2b)P(a, b, c) \\
P(a, b, c) &= W_0(a, b, c) + \epsilon W_1(a, b, c) + \cdots
\end{align*}
\]

\(\epsilon^0\) terms:

- \(W_0(a, b, c) = 0\) if \(b > 0\)
- In this limit \(b\) is always zero
SPA on the master equation

ϵ^1 terms: Reduced master equation

$$\frac{dW_0(a, 0, c)}{dt} = \tilde{k}(a + 1)W_0(a + 1, 0, c - 1) - \tilde{k}aW_0(a, 0, c)$$

Reduced mechanism

$$A \rightarrow C \quad r = \frac{k_1k_2}{k_{-1} + k_2} a$$

- Stochastic same as deterministic SPA mechanism
- Same mechanisms due to linearity

First-order correction, $\langle b \rangle$

$$\langle b \rangle = f(W_0(a, 0, c)) + O(\epsilon^2)$$

$$\langle b \rangle = \frac{k_1}{k_{-1} + k_2} \langle a \rangle$$
Comparison of mechanisms

\[
\begin{align*}
A & \iff 2B & r_1 &= k_1a & r_1 = k_1a \\
B & \rightarrow C & r_2 &= k_2b & r_1 = \frac{k_1}{2} b(b - 1)
\end{align*}
\]

Stoch SPA

\[
A \rightarrow 2C \\
r = \left(\frac{k_1 k_2}{k_2 + k_1}\right) a
\]

Det SPA

\[
A \rightarrow 2C \\
r = k_1a
\]

Det QSSA

\[
A \rightarrow 2C \\
r = k_2 \left[\frac{-k_2 + \sqrt{k_2^2 + 8k_1k_{-1}a}}{4k_{-1}}\right]
\]

\[
\langle c \rangle \\
n_A = 25, n_B = 0, n_C = 0 \\
k_1 = 1 \\
k_{-1} = 1000 \\
k_2 = 1000
\]
Catalyst Example

\[
\begin{align*}
A & \xrightarrow{k_1} B \xrightarrow{k_2} C \\
B + D & \xrightarrow{k_3} B + E \\
k_2, k_3 & \gg k_1
\end{align*}
\]

Stoch SPA mechanism

\[
\begin{align*}
A & \rightarrow C \\
D + A & \rightarrow E + C \\
2D + A & \rightarrow 2E + C \\
\cdots \\
nD + A & \rightarrow nE + C
\end{align*}
\]

\[
\begin{align*}
 r_0 &= \frac{k_1 a}{1 + K_3 d} \\
 r_1 &= \frac{k_3 d}{1 + K_3 (d - 1)} \\
 r_2 &= \frac{k_3 (d - 1)}{1 + K_3 (d - 2)} \\
 r_n &= \frac{k_3 (d + 1 - n)}{1 + K_3 (d - n)}
\end{align*}
\]

Deterministic SPA mechanism

\[
\begin{align*}
A & \rightarrow C \\
D + A & \rightarrow E + A \\
\end{align*}
\]

\[
\begin{align*}
 r_0 &= k_1 a \\
 r_1 &= \frac{k_3 k_1}{k_2} ad
\end{align*}
\]
Conclusions — Stochastic quasi-steady-state approximation

- QSSA species are removed from stochastic models with SPA
- Stochastic QSSA mechanisms different than deterministic QSSA mechanisms
- Application of stochastic QSSA:
 - Reduces the number of kinetic parameters
 - Speeds up KMC simulations (fewer events)
Conclusions — Stochastic quasi-steady-state approximation

QSSA species (# of molecules)

non-QSSA species (# of molecules)

<<1

<<1

<<10^3

10^3

10^3

1

10^3

10^3

sQSPA

sQSPA-Ω

dQC

dQSPA
Assumptions for this talk

- Two dimensional surface with a lattice for adsorption, diffusion, reaction, and desorption.
- Square lattice, Z=4
- All sites have identical properties
- Constant temperature
- Adsorbed CO molecules exhibit nearest neighbor repulsions

\[\text{CO} + \frac{1}{2}\text{O}_2 \longrightarrow \text{CO}_2 \]

CO-black, O-gray, Empty-white.
Model mechanism and time scales

Adsorption
\[\text{CO(g)} + *_{i} \xrightarrow{\alpha} \text{CO}_{i} \]
\[\text{O}_2(g) + *_{i} + *_{j} \xrightarrow{\beta} \text{O}_{i} + \text{O}_{j} \]

Desorption
\[\text{CO}_{i} \xrightarrow{\gamma} \text{CO(g)} + *_{i} \]
\[\text{O}_{i} + \text{O}_{j} \xrightarrow{\rho} \text{O}_2(g) + *_{i} + *_{j} \]

Reaction
\[\text{CO}_{i} + \text{O}_{j} \xrightarrow{k_{r}} \text{CO}_2(g) + *_{i} + *_{j} \]

Diffusion
\[\text{CO}_{i} + *_{j} \xrightarrow{d_1} *_{i} + \text{CO}_{j} \]
\[\text{O}_{i} + *_{j} \xrightarrow{d_2} *_{i} + \text{O}_{j} \]

\[
\begin{array}{|c|}
\hline
1/\text{sec} \\
\hline
\alpha = 1.6 \ \beta = 0.8 \ \gamma = 0.8 \ \rho = 0.001 \ \ k_{r} = 1 \ \ d_1 \approx 10^{10} \ \ d_2 \approx 10^{8} \\
\hline
\end{array}
\]
Singular perturbation on the master equation

Surface reaction master equation

\[\frac{dP(n, x)}{dt} = X_{\text{rxn}} \sum_{j=1}^{X_{\text{rxn}}} k_j a_j (n - \nu_j, x - \nu_{x,j}) P(n - \nu_j, x - \nu_{x,j}) - k_j a_j (n, x) P(n, x) \]

\[+ X_{\text{diff}} \sum_{j=1}^{X_{\text{diff}}} d_j a_j (n, x - \nu_{x,j}) P(n, x - \nu_{x,j}) - d_j a_j (n, x) P(n, x) \]

Singular perturbation

\[P(n, x) = W_0(n, x) + \epsilon W_1(n, x) + \epsilon^2 W_2(n, x) + \cdots \]

\[\epsilon = 1/d \]

\(\epsilon^0 \) terms: Diffusion equilibration equations for \(W_0(x|n) \)
Slow time-scale evolution equation

ϵ^1 terms : Reduced master equation

\[
\frac{dW_0(n)}{dt} = \sum_{i=1}^{N_{\text{rxn}}} k_i \langle s_i(n - \nu_i) \rangle W_0(n - \nu_i) - k_i \langle s_i(n) \rangle W_0(n)
\]

What have we gained?

- Removed micro-states from the master equation

<table>
<thead>
<tr>
<th>Lattice Size</th>
<th>Species</th>
<th>Micro-states</th>
<th>Coverage states</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_s = 4$</td>
<td>1</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>$N_s = 25$</td>
<td>2</td>
<td>10^{12}</td>
<td>325</td>
</tr>
<tr>
<td>$N_s = 100$</td>
<td>2</td>
<td>10^{48}</td>
<td>5050</td>
</tr>
</tbody>
</table>

- Tractable number of states, master equation can be solved
Slow time-scale evolution equation

\[\frac{dW_0(n)}{dt} = \sum_{i=1}^{N_{rxn}} k_i \langle s_i(n - \nu_i) \rangle W_0(n - \nu_i) - k_i \langle s_i(n) \rangle W_0(n) \]

Reaction propensities

- \(s_i(x) \) number of reaction \(i \) on configuration \(x \): \(n_{CO} = 45 \) black, \(n_O = 8 \) gray

- \(s_{CO-O} = 26 \)
- \(s_{CO-O} = 22 \)
- \(s_{CO-O} = 26 \)
- \(s_{CO-O} = 23 \)

- \(\langle s_{CO-O} \rangle = 24.9 \)

- \(\langle s_i(n) \rangle = \sum_x s_i(x) W_0(x|n) \) – Calculate with diffusion only KMC
Reduced master equation solution (5x5 lattice)

Probability of n_{CO}, 5x5 lattice

Steady-state probability distribution (5x5)
Verification of perturbation method

\[\sum_x P(n, x) = W_0(n) + \epsilon W_1(n) + O(\epsilon^2) \]

\[\epsilon = 1/d \]

As the diffusion rate increases, \(P(n) \) approaches \(W_0(n) \)

Steady-state probability distribution (5 × 5)

![Steady-state probability distribution](image)
Conclusions — Surface reactions in the infinite diffusion limit

- SPA can be used to eliminate spatial configuration states in a reduced master equation.
- The reduced master equation has sufficiently few states to be simulated on small lattices.
- Reduced master equations of surface reactions can be used to motivate reduced KMC and reduced ODE models.
Model for Vesicular Stomatitis Virus (VSV) infection

I is encapsidation of viral genome
II is replication of encapsidated genome
III is transcription of genome to messenger RNA
Onset of fast fluctuations in the N protein

Features of simulation
- Presence of fast fluctuating and rapidly rising species
- Fast fluctuations slow the full KMC simulation
- Motivates the formulation of a simpler example to understand this phenomenon
The viral genome is amplified by first two reactions

- The free viral proteins and messages are not amplified
- Values of parameters k_1, k_2 and k_3 may cause fast fluctuation in polymerases along with rapid amplification of viral genome
\[
\begin{align*}
A + G & \xrightarrow{k_1} C + G & r_1 = \frac{1}{\Omega} k_1 ag \\
C + G & \xrightarrow{k_2} 2G + A & r_2 = \frac{1}{\Omega} k_2 cg \\
2G & \xrightarrow{k_3} G & r_3 = \frac{1}{\Omega} k_3 \frac{g(g-1)}{2}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial number</th>
<th>Rate constant ((\text{m}^3/\text{mol} \cdot \text{s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>(k_1 = 9 \times 10^5)</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>(k_2 = 5 \times 10^5)</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>(k_3 = 5 \times 10^{-2})</td>
</tr>
</tbody>
</table>
The full SSA on the system

Graph showing the number of C and G molecules over time, with time-step and time axes.

Graph showing the log of the number of molecules over time.

Graph showing the log of the time-step over time.

Graph showing the log of the number of molecules over time.

Graph showing the log of the time-step over time.
The hybrid SSA - Ω technique

At large population of G we want to switch to a continuous description for it:

$$g = \Omega \phi_G + \Omega^{1/2} \xi$$

- ϕ_G is the deterministic evolution term and ξ is the continuous noise in the evolution of G
- We can obtain approximation for the evolution of system using hybrid SSA - Ω technique

Approximation of pdf of C

$$W_0(c) = (1 + q)^{-N_0} \left(\begin{array}{c} N_0 \\ c \end{array}\right) q^{(N_0 - c)}$$

Deterministic evolution of G

$$\frac{d\phi_G}{dt} = \gamma^{-1} \langle c \rangle \phi_G - \frac{k_3}{2} \phi_G^2$$

<table>
<thead>
<tr>
<th>N_0</th>
<th>Initial number of polymerases</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q = \frac{k_2}{k_1}$</td>
<td>Ratio of rate constants</td>
</tr>
</tbody>
</table>
Comparison of full SSA with hybrid SSA - Ω

Full SSA

Hybrid SSA - Ω

Rawlings

Molecular reaction engineering
Comparison of full SSA with hybrid SSA - Ω

Probability densities of C from SSA and from hybrid SSA - Ω

![Graph showing probability densities of C particles from SSA and hybrid SSA]
Conclusions — QSSA and fast fluctuations

- Hybrid SSA – Ω expansion matches closely the full SSA
- Computation speed increases by factor of 450
- Application to kinetic virus infection models
Acknowledgments

- Dr. Ethan A. Mastny, BP Alaska
- Dr. Eric L. Haseltine, Vertex Pharmaceuticals
- Rishi Srivastava, UW
- NSF #CNS–0540147
Further reading — Stochastic reaction equilibrium

Haseltine, E. L. and J. B. Rawlings.
Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics.

Haseltine, E. L. and J. B. Rawlings.
On the origins of approximations for stochastic chemical kinetics.

The slow-scale stochastic simulation algorithm.

Samant, A. and D. G. Vlachos.
Overcoming stiffness in stochastic simulation stemming from partial equilibrium: A multiscale Monte Carlo algorithm.

Salis, H. and Y. Kaznessis.
Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.

Stochastic simulation of catalytic surface reactions in the fast diffusion limit.
Rao, C. V. and A. P. Arkin.
Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm.

van Kampen, N. G.
Stochastic Processes in Physics and Chemistry.

Two classes of quasi-steady-state model reductions for stochastic kinetics.

Hensel, S., J. B. Rawlings, and J. Yin.
Stochastic kinetic modeling of vesicular stomatitis virus intracellular growth.