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Abstract

Tuning a state estimator for a linear state space model requires
knowledge of the characteristics of the independent disturbances
entering the states and the measurements. In Odelson, Raja-
mani, and Rawlings (2006), the correlations between the inno-
vations data were used to form a least-squares problem to de-
termine the covariances for the disturbances. In this paper we
present new and simpler necessary and sufficient conditions for
the uniqueness of the covariance estimates. We also formulate
the optimal weighting to be used in the least-squares objective
in the covariance estimation problem to ensure minimum vari-
ance in the estimates. A modification to the above technique is
then presented to estimate the stochastic disturbance structure
that affects the states. The disturbance structure also provides
information about the minimum number of disturbances affect-
ing the state. This minimum number is usually unknown and
must be determined from data. A semidefinite optimization
problem is solved to estimate the disturbance structure and the
covariances of the noises entering the system.

Keywords
State estimation; Kalman filter; covariance estimation; distur-

bance structure; optimal weighting; minimum variance estima-
tion; semidefinite programming

1 Introduction

We start with the linear time-invariant state-space model in discrete time:

xk+1 = Axk +Buk +Gwk (1a)

yk = Cxk + vk (1b)

in which xk ∈ Rn, uk ∈ Rm, yk ∈ Rp are the state, input and output of the system at
time tk. The dimensions of the system matrices are A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×g

and C ∈ Rp×n. The noises corrupting the state and the output (wk ∈ Rg and
vk ∈ Rp) are modelled as zero-mean Gaussian noise sequences with covariances Qw

and Rv respectively. The noises wk and vk are assumed to be statistically independent
for simplicity. The case where wk and vk are dependent can be handled as shown in
Åkesson, Jørgensen, Poulsen, and Jørgensen (2007). The optimal filtering or state
estimation for the model given in Equations 1a, 1b when there are no constraints
on the input and the state is given by the classical Kalman filter (Kalman and
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Bucy, 1961). If the Gaussian assumption is relaxed, the Kalman filter is the still the
optimal filter among the class of all linear filters (Goodwin and Sin, 1984; Anderson
and Moore, 1979).

If complete knowledge about the deterministic part of the model i.e. A,B,C is
assumed, then the Kalman filter or for that matter any state estimator requires the
knowledge of stochastic part of the model i.e. G,Qw, Rv. The G matrix shapes the
disturbance wk entering the state. Physical systems often have only a few indepen-
dent disturbances which affect the states. This implies a tall G matrix with more
rows than columns. In Odelson et al. (2006), an autocovariance least-squares method
for estimating the covariances Qw, Rv was presented. The estimation technique was
based on the correlations between the measurements at different times. The correla-
tion based method was largely pioneered by Mehra (1970, 1971, 1972) and adapted
by many others (Neethling and Young, 1974; Isaksson, 1987; Carew and Bélanger,
1973; Bélanger, 1974; Noriega and Pasupathy, 1997). All of these techniques assume
that the disturbance structure as given by the G matrix is known. In the absence of
any knowledge about G an assumption that G = I is often made, which implies that
an independent disturbance enters each of the states. This type of independence of
the disturbances is unlikely for physical reasons. To the best of our knowledge, there
exists no technique in the literature to estimate the structure of the disturbances
entering the state, which we do in this paper. We also give the formula for a linear
unbiased minimum variance estimation of the covariances. Throughout we assume
complete knowledge about A,B,C and treat the stochastic part of the model as the
only unknowns.

The rest of the paper is organized as follows: In Section 2 we give some mathe-
matical preliminaries that are required to understand the rest of the paper. Section 3
gives the formulation of the Autocovariance Least-Squares (ALS) technique simplified
from Odelson et al. (2006). The main contributions of this paper are then presented
in Sections 4, 5 and 6. Simple mathematical conditions to check for uniqueness of the
covariance estimates are proved in Section 4 and the results used in the remaining
sections. In Section 5, we find the optimal weighting matrix to calculate the linear
unbiased minimum variance estimates of the covariances. In Section 6 we estimate
the noise shaping matrix G from data using Semidefinite Programming (SDP). The
G matrix contains information about the disturbance structure and the number of
independent disturbances affecting the state equals to the number of columns in G.

2 Background

Assumption 1. We assume that the pair (A,C) is observable

We use the notation x̂k to denote any estimate of the state xk. If L ∈ Rn×p is any



TWMCC Technical Report 2007-02 4

arbitrary, stable filter gain, then the state estimates are calculated recursively as:

x̂k+1 = Ax̂k +Buk + AL(yk − Cx̂k) (2)

When the system is unconstrained, the optimal state estimator is the Kalman filter.
For the Kalman filter the filer gain Lo is calculated by solving the Riccati equation:

Po = APoA
T − APoC

T (CPoC
T +Rv)−1CPoA

T +GQwG
T

Lo = PoC
T (CPoC

T +Rv)−1
(3)

The optimal estimate error covariance is Po = E[(xk − x̂k)(xk − x̂k)T ] calculated as
above. As seen in Equation 3, tuning the optimal state estimator (the Kalman filter
for the linear unconstrained case), requires information about the covariances Qw

and Rv. In the absence of this information the covariances are set heuristically and
the filter gain L is changed in an ad-hoc way to get reasonable performance from the
closed-loop controller.

Given some arbitrary (stable, perhaps suboptimal) initial estimator L, we can
write the evolution of the state estimate error εk = xk − x̂k by subtracting Equation
2 from 1a and substituting 1b:

εk+1 = (A− ALC)︸ ︷︷ ︸
Ā

εk +
[
G −AL

]︸ ︷︷ ︸
Ḡ

[
wk

vk

]
Yk = Cεk + vk

(4)

in which Yk are the L-innovations defined as Yk , yk − Cx̂k. Note that the L-
innovations are uncorrelated in time if the initial state estimator L is optimal (i.e.
L = Lo) (Anderson and Moore, 1979). We use the term L-innovations to distinguish
them from the optimal innovations obtained by using the optimal state estimates.

Assumption 2. The L-innovations data {Y1, · · ·YNd
} used in the techniques de-

scribed in this paper are obtained after the system has reached steady state and any
initial transience can be neglected when Ā is stable

Given a set of steady state L-innovations data {Y1, · · ·YNd
}, we want to form a

weighted least-squares problem in the unknown disturbance covariances, GQwG
T , Rv.

One of the motivations behind using a least-squares approach is to avoid a com-
plicated nonlinear approach required for techniques involving maximum likelihood
estimation eg. Shumway and Stoffer (1982).

In the subspace ID literature (Gevers, 2006; Van Overschee and De Moor, 1994,
1995; Viberg, 1995; Juang and Phan, 1994; Qin, Lin, and Ljung, 2005), the identi-
fication procedures estimate the model and the stochastic parameters starting with
the model in the innovations form, which is Equation 2 rewritten as:

x̂k+1 = Ax̂k +Buk + ALoek (5a)
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yk = Cx̂k + ek (5b)

Here ek are the optimal innovations (as opposed to the L-innovations) and hence
uncorrelated in time. The estimation of the system matrices Â, B̂, Ĉ is carried out
along with the optimal Kalman filter gain L̂o, where the ·̂ symbol denotes an estimate.

Notice the difference between Equations 5a,5b and Equations 1a, 1b. If the
subspace ID techniques are used to identify only the stochastic parameters then the
disturbance covariances as identified as AL̂oSL̂

T
oA

T instead of GQwG
T for the state

noise and S instead of Rv for the measurements, where S is the covariance of ek

given by:

S = CPoC
T +Rv

where, Po is defined in Equation 3.

Remark 1. As shown above, subspace ID techniques estimate a different set of co-
variances than G,Qw, Rv. The aims of subspace ID are different and the estimates
of the stochastic parameters are simply used to compute the optimal estimator gain.
Finding the covariance parameters affecting the system (G,Qw, Rv) on the other hand
provides more flexibility in the choice of the state estimator. For example we may
wish to employ a constrained, nonlinear moving horizon estimator (Rao, Rawlings,
and Lee, 2001). In addition estimating G,Qw, Rv gives a more informative handle
to monitor the disturbances than monitoring changes in the optimal estimator gain.

Also see Remark 2 for requirements about exciting inputs in subspace ID tech-
niques.

3 The Autocovariance Least-Squares (ALS) Tech-

nique

Following the derivation along the lines of Odelson et al. (2006), we use Equation 4
to write the following expectation of covariances:

E(YkY
T

k ) = CPCT +Rv (6)

E(Yk+jY
T

k ) = CĀjPCT − CĀj−1ALRv j ≥ 1 (7)

which are independent of k because of our steady state assumption. Again using
Equation 4 we note that P satisfies the Lyapunov equation:

P = ĀP ĀT +
[
G −AL

]︸ ︷︷ ︸
Ḡ

[
Qw 0
0 Rv

]
︸ ︷︷ ︸

Q̄w

ḠT (8)
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In Odelson et al. (2006) the autocovariance matrix was defined as:

R(N) = E

 YkY T
k · · · YkY T

k+N−1
...

. . .
...

Yk+N−1Y T
k · · · YkY T

k

 (9)

where N is the number of lags. To avoid redundant definition of the lagged covari-
ances, here we use only the first block column of the autocovariance matrix R1(N):

R1(N) = E

 YkY T
k

...
Yk+N−1Y T

k

 (10)

Using Equations 6, 7 and 8, we can write the R1(N) as:

R1(N) = OPCT + ΓRv (11)

in which

O =


C
CĀ

...
CĀN−1

 Γ =


Ip

−CAL
...

−CĀN−2AL

 (12)

The single column block development of the ALS technique as above is preferred
over the use of the full R(N) matrix as in Odelson et al. (2006) due to the simpler
formulation when using only R1(N).

In this result and those to follow, we employ the standard definitions and prop-
erties of the Kronecker product, Kronecker sum and the direct sum (Steeb, 1991;
Graham, 1981; Van Loan, 2000). If use the s subscript to denote the column-
wise stacking of the matrix into a vector, a useful Kronecker product result is
(AXB)s = (BT ⊗ A)Xs (here ⊗ is the standard symbol for the Kronecker prod-
uct).

We then stack Equation 11 and use the stacked form of Equation 8 to substitute
out P :

b = (R1(N))s = [(C ⊗ O)(In2 − Ā⊗ Ā)−1](GQwG
T )s

+ [(C ⊗ O)(In2 − Ā⊗ Ā)−1(AL⊗ AL)

+ (Ip ⊗ Γ)](Rv)s

(13)

Now that we have Equation 13, we use the ergodic property of the L-innovations to
estimate the autocovariance matrix R1(N) from the given set of data (Jenkins and
Watts, 1968):

̂E[YkY T
k+j] =

1

Nd − j

Nd−j∑
i=1

YiY
T

i+j (14)
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If {Y1,Y2, · · ·YNd
} are the set of L-innovations calculated from data as given by

Equation 4, and N is the window size used for the autocovariances then we define
the matrix Y as follows:

Y ,


Y1 Y2 · · · YNd−N+1

Y2 Y3 · · · YNd−N+2
...

...
...

...

YN YN+1
... YNd

 (15)

Y ∈ Rp̃×ñ where, ñ , Nd − N + 1 and p̃ , Np. Using Equation 14, the estimate

R̂1(N) is then given by:

R̂1(N) =
1

Nd −N + 1
YYT

(1:p,:) (16)

and b̂ = (R̂1(N))s. Here, Y(1:p,:) is the first row block of Y also given by:

Y(1:p,:) =
[
Ip 0 · · · 0

]︸ ︷︷ ︸
E

Y (17)

Given the linear relation in Equation 13 and the estimate b̂ from Equation 16, we
can formulate the following positive definite constrained least-squares problem in the
symmetric elements of the covariances GQwG

T , Rv:

Φ = min
GQwG,Rv

∥∥∥∥A [
Dn(GQwG

T )ss

(Rv)ss

]
− b̂
∥∥∥∥2

W

subject to, GQwG
T , Rv ≥ 0, Rv = RT

v

(18)

Here we introduce the notation of (Rv)ss to denote the column-wise stacking of only
the symmetric p(p+ 1)/2 elements of the matrix Rv (eliminating the supra-diagonal

elements). More explicitly there exists an unique matrix Dp ∈ Rp2× p(p+1)
2 called the

duplication matrix (Magnus and Neudecker, 1999, p. 49) containing ones and zeros
that gives the relation (Rv)s = Dp(Rv)ss.

Using Equation 13, we can then write A explicitly as:

A =[A1 A2]

A1 =[(C ⊗ O)(In2 − Ā⊗ Ā)−1]

A2 =[(C ⊗ O)(In2 − Ā⊗ Ā)−1(AL⊗ AL)

+ (Ip ⊗ Γ)]Dp

(19)

where, the duplication matrix Dp is included to ensure symmetry in the covariance
estimates.
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The estimation method in Equation 18 is referred to as the Autocovariance Least-
Squares (ALS) technique in the sequel. A recent application of the ALS technique
was presented in Zhuang, Rajamani, Rawlings, and Stoustrup (2007a,b). The ALS
technique can also be used to estimate the optimal filter gain when there are inte-
grating disturbance models in model predictive control (Rajamani, Rawlings, Qin,
and Downs, 2006).

Remark 2. A significant advantage of using the ALS technique and the modifications
presented in the rest of this paper over other identification techniques is the use of
only steady state data in the calculations. This means that unlike other identification
techniques there is no requirement for exciting inputs to be applied to the system.

4 Conditions for Uniqueness

In this section, we assume that the G matrix is a known ∈ Rn×g matrix. Without
loss of generality we can also assume G to be of full column rank. If G is not full
column rank then a new matrix G̃ can be defined with its columns independent and
such that G̃G̃T = GGT .

We next derive simple conditions for uniqueness for the ALS problem with Qw, Rv

as unknowns and a known G. In the rest of this section we also assume that the
weighting for the norm in the objective function is W = I.

Φ = min
Qw,Rv

∥∥∥∥Ã [
(Qw)ss

(Rv)ss

]
− b̂
∥∥∥∥2

s.t. Qw, Rv ≥ 0, Rv = RT
v , Qw = QT

w

(20)

where, Ã =
[
A1(G⊗G)Dg A2

]
Lemma 1. The optimization in Equation 20 has a unique solution if and only if Ã
in Equation 20 has full column rank.

Proof. Existence of a feasible solution is proved by observing that Qw = Ig and
Rv = Ip are valid solutions satisfying the constraints. To prove uniqueness, we see

that Ã having full column rank guarantees the objective function in Equation 20
to be strictly convex. The constraints are on the covariance matrices being positive
definite and hence also convex (Vandenberghe and Boyd, 1996; Boyd, Ghaoui, Feron,
and Balakrishnan, 1994). Uniqueness then follows for a strictly convex objective
function subject to convex constraints (Boyd and Vandenberghe, 2004, p. 137).

Assumption 3. We assume that the state transition matrix A in non-singular. If
the original A is singular, then a similarity transformation can be used to eliminate
the states with zero eigenvalues and the noise covariances redefined.
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Lemma 2. If (A,C) is observable and A is non-singular, then the matrix Ã in
Equation 20 has a null space if and only if the matrix M defined by, M = (C ⊗
In)(In2−Ā⊗Ā)−1(G⊗G)Dg also has a null space, and the null space of A1(G⊗G)Dg

which multiplies (Qw)ss in Equation 20 is equal to the null space of M .

The derivation is given in Appendix B.

Theorem 1. If (A,C) is observable and A is non-singular, the optimization in Equa-
tion 20 has a unique solution if and only if dim[Null(M)] = 0, where:

M =(C ⊗ In)(In2 − Ā⊗ Ā)−1(G⊗G)Dg

Proof. The proof follows from Lemmas 1 and 2.

Corollary 1. If C is full column rank (i.e. the number of sensors equal the number
of states), then the optimization in Equation 20 is unique.

Proof. C having full column rank implies M in Theorem 1 has full rank and hence
an empty null space. The optimization in Equation 20 then gives a unique solution
according to Theorem 1.

5 Minimum Variance and Optimal Weighting

Theorem 2. For a linear model of the form y = Ax+ e with E[e] = 0 and E[eeT ] =
R, the weighted least-squares estimator for x is formulated as:

min
x
‖Ax− y‖2

R−1

The weighted least-squares estimator given by

x̂ = (ATR−1A)−1ATR−1y

then has the minimum variance among all linear unbiased estimators.

This statement is a classical generalized least squares result for the linear regres-
sion model first considered by Aitken (1935). A more recent proof can be found for
example in Magnus and Neudecker (1999, p. 259).

The weighted least-squares estimation of the covariances is given by the ALS
technique as shown by Equation 18. In Odelson et al. (2006) however, the weighting
matrix W in the ALS problem is taken to be the identity matrix. The minimum
variance property for the estimates then does not hold. We next derive the formula
for the minimum variance weighting matrix W .

Following the analogy of Theorem 2 for Equation 18, if b̂ is an unbiased estimator
of b, then b = E[b̂]. Define S , E[(b̂ − b)(b̂ − b)T ] = cov(b̂) as the covariance of b̂.
Then W = S−1 is the weighting that gives minimum variance for the ALS problem.
It is shown in Odelson et al. (2006) that b̂ in Equation 16 is an unbiased estimator.
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Lemma 3. Given the L-innovations from Equation 4 and the definition of Y from
Equation 15, we have

E[Y] = 0

E[YYT ] , E[YsYT
s ]

= Ω

with Ω as defined in Appendix A (Equation 30). The random matrix Y is distributed
normally with Y ∼ N(0,Ω).

Proof of Lemma 3 is given in Appendix A.
Note that the formula for Ω as given by Equation 30 depends on the unknown

disturbance covariances Qw, Rv and G.

Theorem 3. The minimum variance weight to use in the the ALS objective in Equa-
tion 18 is given by W = S†, where,

S =
T (Iñ2p̃2 +K(ñp̃)(ñp̃))((Kp̃ñΩKñp̃)⊗ (Kp̃ñΩKñp̃))T T

(Nd −N + 1)2
(21)

and Kij is the commutation matrix defined in Magnus and Neudecker (1979). T is
defined as:

T = (E⊗ Ip)(Ip̃2 ⊗ (Iñ)s)
T (Ip̃ ⊗Kp̃ñ ⊗ Iñ)

and E = [Ip, 0 · · · 0]. ñ = Nd −N + 1 and p̃ = Np

Proof. Since Y ∈ Rp̃×ñ is a matrix as defined in Equation 15 which is normally
distributed with mean 0 and covariance Ω as defined in Lemma 3, the fourth moment
of Y is defined as follows:

cov [YYT ] , cov((YYT )s)

The formula for the fourth moment of Y i.e cov(YYT ) for a normal distribution
is given by:

cov (YYT ) =

T1(Iñ2p̃2 +K(ñp̃)(ñp̃))((Kp̃ñΩKñp̃)⊗ (Kp̃ñΩKñp̃))T T
1

(22)

where, T1 = (Ip̃2 ⊗ (Iñ)s)
T (Ip̃ ⊗Kp̃ñ ⊗ Iñ). The formula follows from the the results

in Ghazal and Neudecker (2000). See Ghazal and Neudecker (2000) for more details
on the derivation. The commutation matrix Kij is a ∈ Rij×ij matrix containing only
1’s and 0’s and gives the following relationship between (A)s and (AT )s when A is a
∈ Ri×j matrix: (A)s = Kij(A

T )s and (AT )s = Kji(A)s.
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We also have from Equations 16 and 17:

b̂ = (YYT ET )s

= (E⊗ Ip)(YYT )s

From Equation 22 we can then calculate the covariance of b̂:

S = cov(b̂)

=
(E⊗ Ip)cov(YYT )(ET ⊗ Ip)

(Nd −N + 1)2

Thus we get Equation 21 as the covariance of b̂ where T = (E⊗ Ip)T1.
The optimal weight is then W = S−1 following Theorem 2. If S is singular, then

without loss of generality we can take W = S†, the Moore-Penrose pseudoinverse of
S.

The weight W it a complicated function depending on the values of the unknown
covariances. A recursive calculation may be carried out for calculating W and the
covariances.

1. Guess a value for Q̂, R̂v, where Q = GQwG
T and calculate Ω and W = S−1

using Equations 30 and 21.

2. Use the estimated weight in the ALS technique to estimate Q̂, R̂v using Equa-
tion 18

3. Use estimates in previous step to recalculate W

4. Iterate until convergence

The convergence of the above iterative scheme has not been tested because of the
computational burden (see Remark 4).

Remark 3. If the initial estimator gain L was optimal, the L-innovations (or just
innovations) would be white. The formula for S (Equation 21) would then be much
simpler and would be the second moment of the Wishart distribution (Anderson,
2003). White innovations would also imply optimality of the filter and there would
be no need to calculate the covariances. In the more practical situation when the L-
innovations are not white, the assumption of ‘whiteness’ would lead to an incorrect
weighting. This incorrect weighting was used in Dee, Cohn, Dalcher, and Ghil (1985).

Remark 4. The computation of S from Equation 21 becomes prohibitively large
even for a small dimensional problem with large data sets. This is a drawback for
any practical application until efficient means for the computation are found.
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Remark 5. Although the weight may be estimated from data, a large data set is
required before getting reliable estimates for the weights. An attractive alternative to
circumvent the need for large data sets is to use Bootstrapping, for example Stoffer
and Wall (1991).

5.1 Example of Lower Variance

Consider the following model for the system:

xk+1 =

[
0.732 −0.086
0.172 0.990

]
xk +

[
1 0
0 0.2

]
wk

yk = xk + vk

Data is generated by drawing the noises from the following distributions:

wk ∼ N

(
0,

[
0.5 0
0 0.2

])
, vk ∼ N

(
0,

[
1 0
0 2

])
The ALS estimation of the covariances Qw, Rv for a set of data simulated using
W = I and using the minimum variance weight (iterative scheme) from the above
section is compared. The covariance estimation is repeated 100 times and the results
are plotted to check for the variance in the estimates. The diagonal elements of the
estimated Qw, Rv are plotted.

As seen in Figures 1 and 2 using the optimal weight gives estimates having much
lower variance than using W = I.

-4

-3

-2

-1

0

1

2

3

4

0.4 0.6 0.8 1 1.2

Qw diagonal elements

Rv diagonal elements

Figure 1: Covariance estimates using W = I in ALS
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-2

-1

0

1

2

3

4

0.4 0.6 0.8 1 1.2

Qw diagonal elements

Rv diagonal elements

Figure 2: Covariance estimates using a minimum variance weight in ALS

6 ALS-SDP method

In this section the G matrix is also assumed to be unknown in addition to the Qw, Rv

matrices. An estimation technique is presented that estimates the structure of the
G matrix modelling the minimum number of independent disturbances affecting the
state.

Generally a linear model of a system has many states and only a few independent
disturbances corrupting these states. Any noise wk that enters the state xk+1 is
first scaled by the G matrix and then by the C matrix before it is measured in the
output yk+1 (Equations 1a and 1b). It is unlikely to have information about the
G matrix in most applications. Information contained in the measurements is also
usually not enough to estimate a full GQwG

T matrix uniquely (this can be checked
using Theorem 1). If there are fewer sensors than the states, there can be multiple
covariances that generate the state noises making up the same output data (Corollary
1).

When G is unknown, our aim is to find the minimum rank Q (where, Q =
GQwG

T ). A minimum rank Q can be decomposed as follows:

Q = G̃G̃T , Q̃w = I (23)

It should be noted that the choice Q̃w = I is not a binding choice for the covariance
because any other choice of Q̃w can be easily absorbed into G̃ by redefining G̃1 =
G̃
√
Q−1

w so that Q = G̃G̃T = G̃1QwG̃
T
1 .

Having Q with minimum rank would ensure that G̃ has the minimum number
of columns. The number of columns in the matrix G is equal to the number of
independent disturbances entering the state and equal to the rank of Q. Hence,
by estimating G̃, we get information about the minimum number of independent
disturbances entering the data in addition to the disturbance structure.
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Remark 6. With reference to Equation 23, one might think that a more natural
procedure would be to solve the ALS optimization in Equation 18 directly with G as
the optimization variable and constraining Qw instead of solving with Q and then
following with the decomposition. The reason for solving with Q as the optimization
variable is to avoid the nonlinearity that would be introduced if the elements of G are
used as optimization variables and the extra flexibility in allowing for minimization
of the rank of Q.

In the development of the remaining results in this section , we take the weight
W = I. The more general case is addressed in Remark 7 at the end of this section.
The rank can be explicitly added to the objective in Equation 18 through a tradeoff
parameter ρ multiplying the rank:

Φ∗ = min
Q,Rv

∥∥∥∥A [
(Q)s

(Rv)s

]
− b̂
∥∥∥∥2

︸ ︷︷ ︸
Φ

+ρRank (Q)

Q,Rv ≥ 0, Q = QT , Rv = RT
v

(24)

The constraints are in the form of convex Linear Matrix Inequalities (LMI) (Boyd
et al., 1994; VanAntwerp and Braatz, 2000). The norm part of the objective is also
convex. The rank however can only take integer values making the problem NP hard.
The solution of minimizing the rank subject to LMI constraints is an open research
question and current techniques are largely based on heuristics (Vandenberghe and
Boyd, 1996).

Since the rank is the number of nonzero eigenvalues of a matrix, a good heuristic
substitute for the rank is the sum of its eigenvalues or the trace of the matrix. The
trace of a matrix is also the largest convex envelope over the rank of the matrix
(Fazel, 2002).

Rank (Q)min ≥
1

λmax(Q)
Tr (Q)

The trace of a matrix is a convex function of Q. The optimization in Equation 24
can be rewritten with the trace replacing the rank:

Φ1 = min
Q,Rv

∥∥∥∥A [
(Q)s

(Rv)s

]
− b
∥∥∥∥2

︸ ︷︷ ︸
Φ

+ρTr (Q)

Q,Rv ≥ 0, Q = QT , Rv = RT
v

(25)

Lemma 4. Given an optimization problem in the matrix variable X ∈ Rn×n with
the following form:

min
X

(AXs − b)T (AXs − b) + ρTr (X)

subject to X ≥ 0, X = XT
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with the matrices A and b appropriately dimensioned, the optimization can be rewrit-
ten in the following standard primal Semidefinite Programming problem:

min
x

cTx

subject to F (x) ≥ 0

where F (x) , F0 +
m∑

i=1

xiFi

with the symmetric matrices F0, · · · , Fm ∈ Rn×n and the vector c ∈ Rm chosen
appropriately.

The derivation is given in Appendix C.
Given the above Lemma 4, if we define X = diag(Q,Rv) then Equation 25 is

in the form of a Semidefinite Programming (SDP) problem with A defined accord-
ingly. We refer to this problem as the ALS-SDP (Autocovariance Least-Squares with
Semidefinite Programming) in the sequel.

Lemma 5. If p < n (i.e. number of measurements is fewer than the number of
states), then the following holds for Equation 25:

dim[Null(A )] ≥ (n− p)(n− p+ 1)/2

Proof. The dimension condition follows by substituting G = I in Lemma 2, noting
that (In2 − Ā⊗ Ā) is full rank and using the rank condition in Hua (1990).

Theorem 4. A solution (Q̂, R̂v) to the ALS-SDP in Equation 25 is unique if dim[Null(M)] =
0 where,

M =(C ⊗ In)(In2 − Ā⊗ Ā)−1(G⊗G)Dg

and G is any full column rank decomposition of Q̂ = GGT (G is an unique decom-
position within an orthogonal matrix multiplication).

Proof. The function:

Φ =

∥∥∥∥A [
(G⊗G)(Qw)s

(Rv)s

]
− b
∥∥∥∥2

is the first part of the objective in Equation 25 and also the same as the objective
in Equation 20. Following Theorem 1 and Lemma 1, dim[Null(M)] = 0 then implies
that Φ is strictly convex at the solution Qw = Ig, Rv = R̂v.

The other part of the objective in Equation 25 i.e. Tr (Q) is linear in the variable
Q and hence is also convex. The overall objective in Equation 25 is then strictly
convex at the solution Q̂, R̂v when dim[Null(M)] = 0. Uniqueness of the solution thus
follows from minimization of a strictly convex objective subject to convex constraints
(Boyd and Vandenberghe, 2004).
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The ALS-SDP method gives a feasible solution for each value of the tradeoff
parameter ρ by using simple Newton-like algorithms. The choice of ρ is made from
a tradeoff plot of Tr (Q) versus Φ from Equation 25. A good value of ρ is such that
Tr (Q) is small and any further decrease in value of Tr (Q) causes significant increase
in the value of Φ. This ensures that the rank of Q is minimized without significant
compromise on the original objective Φ (Rajamani and Rawlings, 2006).

The matrix inequalities Qw ≥ 0, Rv ≥ 0 can be handled by an optimization
algorithm adding a logarithmic barrier function to the objective. The optimization
algorithm then minimizes:

Φ1 = min
Qw,Rv

Φ + ρTr (Q)− µ log

∣∣∣∣Q 0
0 Rv

∣∣∣∣ (26)

in which, µ is the barrier parameter and | · | denotes the determinant of the matrix
(Nocedal and Wright, 1999). The log-determinant barrier is an attractive choice
because it has analytical first and second derivatives. Appendix D lists some useful
matrix derivatives arising in the optimization in Equation 26. As with other barrier
techniques, with µ→ 0, the solution to the SDP tends to the optimum solution. The
following approach was used to solve the barrier augmented SDP.

1. Choose a value for the tradeoff parameter ρ

2. Iteration k=0

3. Choose a starting value of µ (say µ = 100)

4. Solve the SDP and let the solution be Qk, Rk

5. Decrease value of µ (say choose the new value as µ/2)

6. Increase value of k by 1 and repeat step 4 till µ < 10−7

7. Check conditions in Theorem 4 for uniqueness. If the solution is not unique
then repeat with higher value for ρ.

Other path following type of algorithms can be found in Wolkowicz, Saigal, and
Vandenberghe (2000, chap. 10). The convexity of Equation 26 ensures a unique
termination of the minimization algorithm. The algorithm scales efficiently for large
dimensional problems.

Remark 7. The inclusion of the weight W as derived in Section 5 would give an
estimate of Q which has minimum variance among all constrained unbiased linear
estimators. However since W itself is a highly nonlinear function of the unknown
covariances, the whole purpose of the convex optimization in Equation 25 is defeated
if W is included as a part of the optimization. Apart from that, the computational
challenge of calculating W justifies its exclusion from the objective.
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6.1 Example

Let the plant be simulated using the following state-space matrices.

A =

[
0.733 −0.086
0.172 0.991

]
C =

[
1 2

]
G =

[
1

0.5

]
with noises drawn from the distributions:

wk ∼ N(0, 0.5), vk ∼ N(0, 1)

Although the data is generated by a single column G matrix, we assume G is
unknown and estimate it using the ALS-SDP procedure.

0

1

2

3

4

5

6

7

8

9

10−2 100 102

ρ

ρ = 0.31

Φ

Tr(Q)

Rank(Q)

Figure 3: Values of competing parts of the objective function in Equation 25 for
different values of ρ and the rank of Q

The results from the new ALS-SDP are shown in Figures 3 and 4. The plots
show that choice of ρ = 0.31 is where the Tr (Q) is the minimum with no significant
change in Φ. Also, the rank(Q) at ρ = 0.31 is 1, which is the number of independent
disturbances entering the state in the simulated data (columns of G).

Also the estimated disturbance structure and covariances using ρ = 0.31 is:

Q̂ =

[
0.449 0.249
0.249 0.138

]
, R̂v = 0.99
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Figure 4: Tradeoff plot between Φ and Tr(Q) from Equation 25 to choose the tradeoff
parameter ρ

After decomposition according to Equation 23 we get, Ĝ = [0.670, 0.372]T , Q̂w =
1. Again if Q̂w were chosen to be 0.5, then the decomposition of Q̂ gives Ĝ =
[0.95, 0.52]T , which is close to the actual G simulating the data.

The estimated positive semidefinite Q̂ and a positive definite R̂v can then be used
to tune any state estimator chosen by the user. With the above estimated covariances
for ρ = 0.31, the Kalman filter tuning L̂ is compared with the optimal Lo:

L̂ =

[
0.312
0.211

]
Lo =

[
0.328
0.202

]

7 Conclusions

Given a set of system matrices A,C, a known noise shaping matrix G and an initial
arbitrary stable filter gain L, uniqueness of the estimates of Qw and Rv using the
ALS technique can be checked using the simple conditions in Theorem 1. The com-
putational burden in checking these conditions is minimal even for large dimension
systems. Estimates of the noise covariances from data are minimum variance only
if the least-squares is weighted with the optimal weight. This weight was shown
to depend on the fourth moment of data and a formula was derived (Theorem 3).
An example was presented to show the reduced variance in the covariance estimates
when using the minimum variance weight. The complicated nature of the formulae
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do not make them practical using current computational techniques. The weight
however puts to rest the issue of the existence of the best linear unbiased estimator
for the covariances. One of the major uncertainties in the process industries is the
disturbance structure affecting the significant variables of the plant. For linear mod-
els we showed that the disturbance structure is captured accurately by the matrix
G in Equation 1a, which shapes the noises entering the states. Estimation of the
minimum number of disturbances affecting the states is equivalent to minimizing the
rank of G. An estimation procedure using SDP and a rank heuristic was shown to
give a tradeoff between fit to the data and the minimization of the rank. The ‘knee’
of the tradeoff curve was shown to give good estimates for the minimum number of
disturbances and the disturbance structure.
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A Proof of Lemma 3

Let Yp = [Y T
1 · · ·Y T

Nd
]T . Then we have,

Y1
...

YN

Y2
...

YN+1

...

YNd−N+1
...

YNd



=



1 · · · 0 · · ·
...

. . .
...

... · · · · · ·
0 · · · 1 · · ·
... 1 · · · 0

0
...

. . .
... · · · · · ·

... 0 · · · 1
. . .

· · · · · · · · · . . .

· · · · · · · · · IN


︸ ︷︷ ︸

E1



Y1
...

YN

YN+1
...

YNd


(27)

Thus, Ys = E1Yp. Now we look at the distribution of Yp.
From Equation 4, we have

εk = Ākε0 +
k−1∑
j=0

Āk−j−1Ḡ

[
wj

vj

]
(28)

Taking the expectation of the above expression and noting that E[vk] = E[wk] = 0,
we get,

E[εk] = ĀkE[ε0] = 0

The equality follows from the stability of the initial filter gain L since for k large
enough, we have Āk = (A− ALC)k ≈ 0.

Taking the expectation of the L-innovations in Equation 4, we get:

E[Yj] = CE[εj] + E[vk] = 0

holding for all j ≥ k (k is the initial period of transience, when for i < k, E[εi]
cannot be approximated as 0). Thus, we have

E[Yp] = E

 Y1
...

YNd

 = 0
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Since E(Yp) = 0, the covariance of Yp is also its the second moment.
Now, calculate Ωp the second moment of Yp as follows:

Ωp = E


 Y1

...
YNd

(Y T
1 · · · Y T

Nd

)
Using Equations 6, 7 and 8, we get:

Ωp =


C

CĀ
...

CĀNd−1


︸ ︷︷ ︸

O

POT +

Rv 0 0

0
. . . 0

0 0 Rv

+ Ψ

Rv 0 0

0
. . . 0

0 0 Rv



+


0 0 0 0

CḠ 0 0 0
...

. . .
...

CĀNd−2Ḡ · · · CḠ 0


︸ ︷︷ ︸

Γf

Q̄w 0 0

0
. . . 0

0 0 Q̄w

ΓT
f +

Rv 0 0

0
. . . 0

0 0 Rv

ΨT

(29)

where,

Ψ = Γf


−AL 0 0 0

0 −AL 0 0

0 0
. . . 0

0 0 0 −AL

 , Q̄w =
[
Qw 0
0 Rv

]

Following Equation 28, we see that εk is a linear combination of normally distributed
noises given Āk ≈ 0 and hence is normal. This implies Yk is also normally distributed.
We then have:

Yp ∼ N(0,Ωp)

Next we use Equation 27 and the above result to get the distribution of Y. Since
Y is a matrix, its mean and covariance are defined for the stacked version of the
matrix i.e. Ys. Given the linear relationship between Yp and Ys, we get,

Ys ∼ N(0,E1ΩpET
1 )

Thus, the covariance of Y is:

Ω = E1ΩpET
1 (30)

where Ωp is given by Equation 29 and E1 is defined in Equation 27.
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B Proof of Lemma 2

Let [qN , rN ]T be an element in the null space of Ã in Equation 20, where the dimen-

sions are qN ∈ R
g(g+1)

2
×1 and rN ∈ R

p(p+1)
2
×1. This implies:

Ã

[
qN
rN

]
= 0 or,

[
A1(G⊗G)Dg A2

] [qN
rN

]
= 0

where, A1 and A2 from Equation 19 are:

A1 =(C ⊗ O)A†

A2 =[(C ⊗ O)A†(AL⊗ AL) + (Ip ⊗ Γ)]Dp and

A† =(In2 − Ā⊗ Ā)−1

We then have:

(C ⊗ O)A†(G⊗G)DgqN+

[(C ⊗ O)A†(AL⊗ AL) + (Ip ⊗ Γ)]DprN = 0
(31)

We can rewrite O and Γ as:

O =

[
C

O1Ā

]
, Γ =

[
Ip

O1(−AL)

]
where,

O1 =


C
CĀ

...
CĀN−2


If (A,C) is observable (Assumption 1), then O1 has full column rank for N ≥ (n+1).

Partitioning O and Γ as above, we can write Equation 31 as the following Equa-
tions:

(C ⊗ C)A†[(G⊗G)DgqN + (AL⊗ AL)DprN ]

+DprN = 0
(32a)

(C ⊗ O1Ā)A†[(G⊗G)DgqN + (AL⊗ AL)DprN ]

+(Ip ⊗ O1(−AL))DprN = 0
(32b)
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By expanding Ā = A−ALC and using Equation 32a, Equation 32b simplifies to:

(Ip ⊗ O1A)(C ⊗ In)A†[(G⊗G)DgqN

+(AL⊗ AL)DprN ] = 0

Since O1 is full column rank (Assumption 1) and A is non singular (Assumption 3),
(Ip ⊗ O1A) is also full column rank. This implies:

(C ⊗ In)A†[(G⊗G)DgqN + (AL⊗ AL)DprN ] = 0 (33)

Substituting Equation 33 in 32a and noting that (C ⊗ C) can be written as (In ⊗
C)(C ⊗ In), we get:

DprN = 0

Equation 33 then simplifies to:

(C ⊗ In)A†(G⊗G)DgqN = 0

Thus, qN is an element in the null space of M = (C ⊗ In)(In2 − Ā⊗ Ā)−1(G⊗G)Dg

and rN = 0.
Proving the second part of the lemma is straightforward by starting with Equation

33 and multiplying with (In ⊗ O), which is full column rank.

C Proof of Lemma 4

Since the X matrix is constrained to be symmetric, we only need to consider the
symmetric p = n(n+1)

2
elements of X. Let these symmetric elements of X be stacked

in the vector z ∈ Rp.
The original optimization in Lemma 4 can then be written as:

min
z

(Ãz − b)T (Ãz − b) + dT z

subject to

i=p∑
i=1

ziBi ≥ 0

where, Ã is the A modified to operate only on the symmetric elements of X, Bi ∈
Rn×n, i = 1, · · · , p are the basis matrices for a symmetric ∈ Rn×n matrix and d is
chosen appropriately such that ρTr (X) = dT z.
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Using a standard trick for converting quadratic objective functions into Linear
Matrix Inequalities (see for example Vandenberghe and Boyd (1996)), we get:

min
z,t

t+ dT z

subject to

i=p∑
i=1

ziBi ≥ 0[
t (Ãz − b)T

(Ãz − b) I

]
≥ 0

Define m = p+ 1, x = [zT , t]T ∈ Rm, c = [dT , 1]T ∈ Rm and the matrices

F0 =

 0 −bT
−b I

0

 , Fm =

1 0
0 0

0

 , Fi =

 0 aT
i

ai 0
Bi


i = 1, · · · , p

here, the 0 represents zero matrices with appropriate dimensions. We then get the
final form of the optimization as a standard primal Semidefinite Programming(SDP)
problem:

min
x

cTx

subject to F (x) ≥ 0

where F (x) , F0 +
m∑

i=1

xiFi

D Some Useful Derivatives of Matrix Functions

The results below follow from Magnus and Neudecker (1999); Graham (1981).

Given Q ∈ Rn×n is a symmetric matrix and A ∈ Rp×n(n+1)
2 and b ∈ Rp are some

arbitrary constant matrices with p ≥ n.

F = (AQs − b)T (AQs − b) + ρTr (Q)− µlog|Q|

The first and second derivatives for the above function with respect to the matrix Q



TWMCC Technical Report 2007-02 28

are given by: {[
∂F

∂Q

]
Qk

}
s

= 2ATA(Qk)s − 2AT b+ ρ(In)s − µ(Q−1
k )s (34){[

∂2F

∂Q2

]
Qk

}
s

= 2ATA− µ(Q−1
k ⊗Q

−1
k ) (35)


