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Abstract
Partial enumeration is presented as a method for treating large, linear model
predictive control applications that are out of reach with available MPC
methods. PE uses both a table storage method and online optimization to
achieve this goal. Versions of PE are shown to be closed-loop stable. PE is
applied to an industrial example with more than 250 states, 30 inputs, and
a 25-sample control horizon. The performance is less than 0.01% subopti-
mal, with average speedup factors in the range of 80–220, and worst case
speedups in the range of 4.9–39.2, compared to an existing MPC method.
Small tables with only 25–200 entries were used to obtain this performance,
while full enumeration is intractable for this example.

Keywords
Model predictive control, On-line optimization, Large scale systems

1 Introduction

It is well known that a disadvantage of optimal control is its inherent complexity [10]. Unless a
problem has special structure (such as the linear, unconstrained models that produce the classic
LQ regulator), the evaluation and online implementation of the optimal feedback control presents
a daunting challenge. Due to its roots in optimal control, model predictive control (MPC) certainly
inherits this disadvantage.

As reviewed by Mayne et al. [15], most of the early industrial implementations of MPC traded
the offline complexity of solving and storing the entire optimal feedback control lawu(x) for the
online complexity of solving the open-loop optimal control problem given the particularx initial
condition of interest at any given sample time. For linear models, the online problem is a quadratic
program (QP), and efficient QP solvers allowed practitioners to tackle processes with small to
moderate model dimension and control horizon. See the following papers for further discussion of
methods for efficient online solution of the MPC QPs: [22], [6], [4], [1], [14].

Recently, researchers have developed interesting methods for solving and storing the closed-
loop feedback law for linear,constrainedmodels [2, 27, 28, 29]. These techniques work well for
problems of low dimension. Some authors are exploring ideas for storing feedback solutions also
for nonlinear models [16, 5, 3, 9]. The issue of complexity remains, however. The information to
be stored for looking up the optimal solution grows exponentially in the dimension of the process
model and the control horizon. Practitioners face the following obstacle to further progress. Small
problems are well-addressed by both online methods (solving small dimensional QPs online is
tractable) and offline methods (finding and storing the full solution offline and looking up the
stored solution online are tractable). But, as the problem size increases, eventually neither online
nor offline MPC computational approaches can deliver the control decision in the available sample
time.

It is this class of large problems that we address with the partial enumeration (PE) technique of
this paper. We eschew optimal control for something that may be slightly suboptimal, but which
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remains tractable for real-time implementation on large problems. We combine online optimiza-
tion and storage methods to achieve this end. The following features of the control problem must
be present for our approach to be effective: (i) The large magnitude deterministic disturbances
and setpoints signals change reasonably slowly with time. (ii) The stochastic disturbances, which
change quickly with time, have reasonably small magnitude. As the name “partial enumeration”
suggests, we determine which active constraint sets appear with highest frequency, given a rea-
sonable collection of disturbances and setpoint changes. The optimal solution for these frequently
occurring active constraint sets are computed offline and stored in a table. This table is searched
online for the best control. During online operation we expect the optimal solution to be missing
from the table at many sample times because the number of entries in the table is small compared to
the number of possible optimal active sets. However, the table is adapted online to incorporate new
active sets as the need for them arises. When the optimal solution is not found at a sample time, a
simpler, suboptimal strategy is used for the current control, but the optimal solution is also found
and inserted in the table. It does not matter if finding this optimal solution takes several samples.
When this optimal solution is available, it is inserted in the table and the least recently used opti-
mal solution is discarded so the table size remains small, to allow for efficient online searching. In
this way, the table adapts itself as different disturbance scenarios are encountered. At most sample
points, the solution is found in the table (giving an optimal control), but by not enforcing strict
optimality at every sample, the control can be computed quickly even for large problems.

Under the category of methods that approximate the solution of the MPC QP, Kouvaritakis et
al. [13] proposed a method for fast computation of a suboptimal input sequence by means of an
inner ellipsoidal approximation to the polyhedral constraint set. They later developed heuristic
methods to search outside the ellipsoid for a less conservative solution [12]. A current limitation
of this method is that it does not allow the origin of the system to be shifted without solving a large
semidefinite program (SDP). This method is therefore not applicable to the problem considered
here, because we augment the system with an integrating disturbance model to achieve offset-free
control (see section 2.1). The estimate of the integrating disturbance shifts the origin of the system
ateverysample time.

Rojas et al. [24] described a technique for approximately solving the MPC QP by performing
an offline SVD of the Hessian of the objective function, and using it for an online change of
coordinates. Basis vectors of the SVD are added until the next addition violates an input constraint.
This approach assumes that the origin (steady state) is strictly inside the feasible region. This
method is not well suited for the applications considered here because the steady state is often
constrained, so the origin is usually on the boundary of the feasible region (see section 4.2).

In the remainder of the paper, we define a precise PE algorithm, present some of its theoretical
closed-loop properties, and demonstrate the effectiveness of PE on some reasonably large-scale,
industrially relevant examples. In the examples we explore the following issues: What is a good
choice for the table size, how often is the optimal solution in the table, how suboptimal is the
closed-loop performance, and how quickly can PE solve large control problems compared to cur-
rent methods.
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2 Model Predictive Control

2.1 Controller formulation

We consider a linear time-invariant system model, augmented with integrating states to remove
offset [20]:

xk+1 = Axk +Buk +Bddk

dk+1 = dk

yk = Cxk +Cddk ,

(2.1)

in which xk ∈ Rn is the state,uk ∈ Rm is the input,yk ∈ Rp is the measured output,dk ∈ Rp is the
additional integrating state, and the matricesA, B, C, Bd, Cd are fixed matrices with appropriate
dimensions. Given the measured output, and the previous estimate of the augmented state (defined
later on), the “updated” estimate is computed as:[

x̂k|k
d̂k|k

]
=

[
x̂k|k−1

d̂k|k−1

]
+

[
Lx

Ld

](
yk−

[
C Cd

][
x̂k|k−1

d̂k|k−1

])
, (2.2)

in which the matricesLx∈Rn×p andLd ∈Rp×p can be computed by an appropriate Riccati equation
(see e.g. [20]). We also denote with{x̂k+ j|k} and{d̂k+ j|k} (with j > 0) the corresponding predicted
sequences obtained using the model (2.1) for a given input sequence{uk+ j|k}. We assume that a
linear transformationz= Hzy (usually a subvector) of the measured output variable vectory have
known setpoints ¯z. Without loss of generality, we consider the following “hard” input constraints:

Duk ≤ d , (2.3)

in whichD ∈ Rq×m andd ∈ Rq are specified by the user.

Remark 1. “Hard” constraints as in(2.3)can be used to represent input bound constraints. Input
rate-of-change constraints can be written as “hard” mixed constraints in the form Duk−Gxk ≤ d
using a state augmentation with the past input (see e.g. [23]). Output constraints, instead, should
be considered as “soft” state constraints, since in practice it is not possible to guarantee feasibility
of such constraints. Hard mixed constraints and soft state constraints can be readily included in
the controller formulation but are omitted for simplicity of presentation.

A target calculation module is used at each sampling time to compute the state and input steady-
state that drive the controlled variables to their setpoints while respecting the constraints (2.3).
Several different formulations can be chosen for target calculation, for example, linear or quadratic
objective function, hard constraints with precedence rank ordering, or soft constraints. In this work
we choose the following “two-stage” target calculation scheme [19]. First, we try to solve the
following quadratic program:

min
ūk,x̄k

1
2
(ūk− ū)′Rs(ūk− ū) (2.4a)
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subject to:

x̄k = Ax̄k +Būk +Bdd̂k|k (2.4b)

z̄= Hz(Cx̄k +Cdd̂k|k) (2.4c)

Dūk ≤ d, (2.4d)

in which Rs is a positive definite matrix, ¯u represents the desired setpoint for the inputs, and ¯z
represents the desired output setpoints. If (2.4) is infeasible, we conclude that, for the current
integrating state estimate, we cannot track the controlled variablesz to the given setpoint vector ¯z
without offset. In the latter case, we solve a second quadratic program aimed at minimizing the
offset:

min
ūk,x̄k,z̄k

1
2

{
(z̄k− z̄)′Qs(z̄k− z̄)+(ūk− ū)′Rs(ūk− ū)

}
(2.5a)

subject to: (2.4b), (2.4d) and

z̄k = Hz(Cx̄k +Cdd̂k|k), (2.5b)

whereQs is a positive definite matrix.

Having calculated the targets, we formulate the MPC subproblem to be solved at each decision
timepoint by defining deviation variablesw j andv j as follows:

w j = x̂k+ j|k− x̄k, v j = uk+ j|k− ūk. (2.6)

The MPC optimization problem is then defined as follows:

min
{w}Nj=1,{v}

N−1
j=0

N−1

∑
j=0

1
2

{
w′jQwj +v′jRvj +2w′jMv j

}
+

1
2

w′NPwN (2.7a)

subject to:

w j+1 = Awj +Bvj , j = 0, . . . ,N−1, (2.7b)

Dv j ≤ d−Dsbs, j = 0, . . . ,N−1, (2.7c)

whereDs is defined asDs =
[
D 0

]
, bs is defined asbs =

[
ū′k x̄′k

]′
, R is positive definite, the

matricesQ̂ = Q−MR−1M′ andP are positive semidefinite, and(Â,Q̂1/2) is detectable wherêA =
A−BR−1M′. Notice that (2.7c) corresponds to enforcing the hard constraints (2.3) over the control
horizonN. Moreover, it is important to remark that from (2.4d) it follows thatd−Dsbs≥ 0.

Remark 2. The quantities bs and w0 are parametersin this formulation, and in general both will
change at each decision timepoint. The other quantities Q, R, M, P, A, B, D, Ds, and d remain
constant for purposes of our calculations.
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Remark 3. In the nominal case, i.e. when the initial state is known and the actual plant satisfies
(2.1) with dk = 0 for all k, it follows thatd̂k|k = 0 for all k. Hence, the target bs, computed either
from (2.4)or (2.5), remains constant at each decision timepoint (unless the setpointz̄ is changed).
When the actual system differs from(2.1)and/or the initial state is not known,̂dk|k may change at
each decision timepoint, and so does bs.

We can use (2.7b) to eliminate the state variablesw =
[
w′1 · · · w′N

]′
from the formulation.

By doing so we obtain the following strictly convex quadratic program:

min
v

1
2

v′Hv+g′v (2.8a)

subject to

Av≥ b, (2.8b)

wherev =
[
v′0 · · · v′N−1

]′
; H (positive definite) andA are constant matrices whose definitions

are reported in Appendix A. The vectorsg andb depend on the parametersbs andw0 as follows:

g = Gww0 (2.9a)

b = b̄+Bsbs, (2.9b)

whereb̄ is a constant vector whileGw andBs are constant matrices (definitions reported in Ap-
pendix A). Given the optimal solutionv∗ obtained from either (2.7) or (2.8), we use (2.6) to
recover the first inputuk, that is,

uk = ūk +v∗0, (2.10)

and we injectuk into the plant.

Remark 4. If the system matrix A is not strictly Hurwitz, the numerical solution of(2.8) may be
difficult due to ill-conditioning. It is therefore recommended to reparameterize the inputs in(2.6)
as follows (see [25]):

v j = (uk+ j|k− ūk)−Lw j , (2.11)

where L is chosen such that A+BL is strictly Hurwitz and(2.7a)–(2.7c)are modified accordingly.

2.2 Solving the MPC Subproblem

The problem (2.7) or its alternative formulation (2.8) must be solved once at each decision time-
point. Each problem differs from the ones that precede and follow it only in the parametersbs and
w0. The unique solution to (2.8) must satisfy the following optimality (KKT) conditions:

Hv∗+g−A′aλ
∗
a = 0 (2.12a)

Aav∗ = ba (2.12b)

A iv
∗ ≥ bi (2.12c)

λ
∗
a ≥ 0, (2.12d)
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for some choice of active constraint indicesa, whose complementi denotes the inactive constraint
indices. Assuming, for the moment, that the matrixAa has full row rank (that is, the active con-
straints are linearly independent), we note that the first two equations yield a linear system with a
square nonsingular coefficient matrix, namely,[

H −A′a
Aa 0

][
v∗

λ ∗a

]
=

[
−g
ba

]
. (2.13)

The variablesv∗ andλ ∗a are uniquely determined by this equation.

The options for solving this problem are of three basic types.

1. Solution of the formulation (2.8) using active-set techniques for quadratic programming such
asqpsol .

2. Solution of the (larger but more structured) problem (2.7) using an interior point quadratic
programming solver.

3. The multi-parametric quadratic programming (mp-QP) approach.

The first approach has the advantage of compactness of the formulation; the elimination of the
states can reduce the dimensions of the matrices considerably. However,H andA are in general
not sparse, and since their dimension is proportional toN, the time to solve (2.8) is usuallyO(N3),
since at least one factorization of a coefficient matrix like the one in (2.13) is required. Active-set
methods such asqpsol essentially search for the correct active seta by making a sequence of
guesses, adding and/or removing an element froma at each iteration. If the inequalities (2.12c)
and (2.12d) are satisfied by the solutionv∗ andλ ∗a corresponding to the currenta, the algorithm
terminates with a solution. Otherwise, the violations of these conditions provide guidance as to
which indices should be added to or dropped froma. Milman and Davison [18, 17] describe an
active-set approach based on (2.8) in which changes toa are made in “blocks,” feasibility is not
enforced at every iterate, and active set changes are made preferentially in the early part of the
time interval. Computational results are presented to show convergence in fewer iterations than
conventional active-set methods, but no supporting theory is given. Since we wish to solve a
sequence of problems of the form (2.8) which differ only in the parametersbs andw0 in (2.9), it is
possible to “warm start” an active-set method using information from the instance of (2.8) at the
previous decision point. This approach has the potential of avoiding a fresh factorization of a matrix
of sizeO(N), and when the changes inbs andw0 are small, the solution of the current problem
might be obtainable in a few active-set steps and as little asO(N2) computation time. However,
current implementations seem not to exploit information from the previous decision point to this
extent.

Details of the second approach are described in [22]. In this technique, the highly structured
nature of problem (2.7) is exploited by using a stagewise ordering of the primal and dual variables.
A banded Gaussian elimination algorithm is applied to the systems of linear equations that are
solved to obtain the primal-dual step at each iteration.

In the third approach [2], the dependence of the problem on the parametersbs andw0 is used to
express the solution explicitly in terms of these parameters, and to partition the space occupied by
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(bs,w0) into polyhedral regions within which these expressions are valid. Since our partial enumer-
ation scheme is related to this approach, we sketch it here. From (2.13), we have by substituting
from (2.9) that [

H −A′a
Aa 0

][
v∗

λ ∗a

]
=

[
0
b̄a

]
+

[
0

Bas

]
bs+

[
−Gw

0

]
w0, (2.14)

whereb̄a andBas represent the row subvector/submatrix corresponding to the active seta. Assum-
ing again for the present thatAa has full row rank, it is clear that the solution of (2.14) depends
linearly onw0 andbs, so we can write

v∗ = Kasbs+Kaww0 +cv, (2.15a)

λ
∗
a = Lasbs+Laww0 +cλ , (2.15b)

whereKas, Kaw, Las, Law, cv, andcλ are quantities that depend on the active seta and the problem
data but not on the parametersbs andw0. The region of validity of the solutions in (2.15) is deter-
mined by the remaining optimality conditions (2.12c) and (2.12d). By substituting from (2.15), we
can transform these conditions into explicit tests involving the parameters, as follows:

Lasbs+Laww0 +cλ ≥ 0, (2.16a)

A iKasbs+A iKaww0 +(A icv−bi)≥ 0. (2.16b)

These formulae motivate a scheme for solving the parameterized quadratic programs that moves
most of the computation “offline.” In the offline part of the computation, the coefficient matrices
and vectors in formulae (2.15) and (2.16) are calculated and stored for all setsa that are valid active
sets for some choice of parameters(bs,w0). In the online computation, the active seta for which
(2.16) holds is identified, for a given particular value of(bs,w0). Having found the appropriatea,
the optimalv∗ andλ ∗a are then computed from (2.15).

For the offline computation, Bemporad et al. [2] describe a scheme for traversing the space
occupied by(bs,w0) to determine all possible active setsa. In general, there will be values of
(bs,w0) for which more than one active seta allows satisfaction of the KKT conditions (2.12). In
such cases, we may have either thatAa does not have full row rank and/or some components ofλ ∗a
are zero and/or some components ofA iv∗−bi are zero. It is not clear that the scheme proposed
in [2, Section 4.1.1] is able to handle such situations appropriately. Tondel et al. [28] describe a
more efficient scheme for finding all active setsa for which the set of(bs,w0) satisfying (2.16)
is nonempty and has full dimension. They also show how degeneracies and redundancies can be
removed from the description (2.16). Johansen and Grancharova [11] construct a partition of the
space occupied by(bs,w0) into hypercubes (with faces orthogonal to the principal axes) and devise
a feedback law for each hypercube that is optimal to within a specified tolerance. (Refinement of
the hypercube partition is performed to maintain solution quality.) The nature of the tree allows
it to be traversed efficiently during the online computation. Given the large number of possible
active sets (potentially exponential in the number of inequality constraints), the online part of the
computation may be slow if many evaluations of the form (2.16) must be performed before the
correcta is identified. Tondel et al. [29] show how to construct a binary search tree in which the
leaf nodes correspond to valid active sets, while branching at the internal nodes is determined by
satisfaction or nonsatisfaction of an affine inequality.



TWMCC Technical Report 2006-01 9

We note that the technique described above can be applied also to formulation (2.7); the modifi-
cations required for handling equality constraints in addition to the inequalities are straightforward.

3 Partial Enumeration

3.1 Introduction

From a purely theoretical viewpoint, the complete enumeration strategy described above is unap-
pealing, as it replaces a polynomial-time method for solving each one of the MPC problems (i.e.
an interior-point method) by a method that is obviously not polynomial. Practically speaking, the
offline computation—identification of all regions in the(bs,w0) space—may be tractable for SISO
problems with relatively short control horizonN, but it quickly becomes intractable as the dimen-
sions (m, n) and control horizonN grow. For the online computation, we have even for the carefully
constructed search tree described in [29] that the number of evaluations of the inequalities (2.16)
performed during a traversal of the tree is linear inN.1

The goal of an enumeration strategy is to make the online computations rapid, producing an
input that is (close to) optimal, within the decision time allowed by the system. It is less important
to minimize the amount of offline computation, although there should be, of course, reasonable
limits on the amount of such computation. Our goal is to expand the size and complexity of
systems for which enumeration strategies may be viable, by restricting the possible active setsa
that are evaluated in the online computation to those that have arisen most often at recent decision
points. Essentially, we propose to use the history of the system to improve the practical efficiency
of the control computation. We have observed that on numerous large-size practical problems,
the parameters(bs,w0) encountered at the decision points during a “time window” fall within a
relatively small number of regions defined by the inequalities (2.16) over all possible active setsa.
Hence, it would appear that the offline computations performed by complete enumeration, which
involve a comprehensive partitioning of the(bs,w0) space, are largely wasted.

Ourpartial enumerationapproach has the following key features:

1. We store the matrices and vectors in (2.15a) and (2.16) for only a small subset of possible
active setsa, making no attempt to partition the entire space. These data are stored in a table
of fixed length, with one table entry for eacha.

2. We keep a count of how frequently each active seta in the table was optimal during the
lastT decision points (for some integerT). Given(bs,w0) at the current decision point, we
search the entries in the table in order of decreasing frequency of correctness during the last
T decision points.

3. Suppose now that none of the active setsa in the table passes the tests (2.16) for the given
(bs,w0). In this case, we have some practical options to define the current control input.

1According to [29], the depth of the tree is logarithmic in the number of regions of distinct control laws in(bs,w0)
space, which is generally exponential in the number of inequalities (2.8b), which is generally linear inN.
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(a) We could solve a simplified subproblem (the same problem with a shorter control hori-
zon) to obtain a suboptimal input in the time available.

(b) We could look for the “least suboptimal”a from the table and use thisa to define an
input. We choose thisa such that the condition (2.16b) is satisfied and the control
sequence given in (2.15a) yields the lowest objective function value.

(c) We could fall back on a control decision computed at an earlier decision point. We
discuss this approach further in the next subsection.

4. Independently of the controller’s calculation, we solve the MPC problem (2.7) (or (2.8)), to
obtain the appropriate input and correcta. We compute the data for the (2.15a) and (2.16)
corresponding to the optimal active seta and add it to the table. If the table thereby exceeds
its maximum size, we delete the entry that was correct least recently.

5. The table is initialized by simulating the control procedure for a given number of decision
stages (a “training period”), adding random disturbances in such a way as to force the system
into regions of(bs,w0) space that are likely to be encountered during actual operation of the
system.

The table should be large enough to fit the range of optimal active sets encountered during the
current range of operation of the system, that is, to keep the number of “misses” at a reasonable
level. When the system transitions to a new operating region (corresponding to a different part of
the(bs,w0) space), some of the current entries in the table may become irrelevant. There will be a
temporary spike in the proportion of misses. Once there has been sufficient turnover in the table,
however, we can expect the fraction of misses to stabilize at a lower value. Naturally, we use the
techniques described in [28] to eliminate redundant inequalities in (2.16).

3.2 Implementation

In order to give a proper description of how the partial enumeration MPC solver is implemented in
this work, we need to describe two alternatives that are used to compute the control input when the
optimal active set is not in the current table. The first one is the “restricted” or “reserve” control
sequence, defined as:

vres= (vres
0 ,vres

1 , . . . ,vres
N−2,v

res
N−1) = (v∗1,v

∗
2, . . . ,v

∗
N−1,Kw∗N), (3.1)

where, in this definition,{v∗j} andw∗N are the optimal inputs and terminal state computed at the
previous decision timepoint. The second alternative is the “short control horizon” optimal control
sequence defined as the optimal solution of (2.7) (or (2.8)) for a short horizonN̄ < N, chosen so
that the time required to solve this problem is much shorter than that required to solve the problem
with control horizonN. We denote this control sequence as:

vsh = (vsh
0 , . . . ,vsh

N̄−1). (3.2)

We can now give a formal definition of the proposed partial enumeration MPC algorithm.
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Algorithm 1 (Partial enumeration MPC).
Data at time k: a table with Lk ≤ Lmax entries (each entry contains the matrices/vectors in the
systems(2.15a)-(2.16), a time stamp of the last time the entry was optimal, a counter of how many
times the entry was optimal), “restricted” sequence vres (computed at time k−1), previous target
bprev

s =
[
ū′k−1 x̄′k−1

]′
, current target bs and deviation state w0.

Repeat the following steps:

1. Search the table entries in the decreasing order of optimality rate. If an entry satisfies(2.16)
for the given w0 and bs, compute the optimal control sequence from(2.15a), define the current
control input as in(2.10), and go to Step 5. Otherwise,

2. If the following condition holds:

δ =
‖bs−bprev

s ‖2
1+‖bs‖2

≤ δmax, (3.3)

for a user-specified (small) positive scalarδmax, define the current control input as:

uk = vres
0 + ūk−1, (3.4)

and go to Step 4. Otherwise,

3. Solve the “short control horizon” MPC problem and define the current control input as:

uk = vsh
0 + ūk. (3.5)

4. Solve(2.7) (or (2.8)) and compute the matrices/vectors in(2.15a)-(2.16) for the optimal
active set. Add the new entry (possibly deleting the entry that was optimal least recently if
the Lk = Lmax).

5. Update time stamp and frequency for the optimal entry. Define vres for the next decision
timepoint as in(3.1).

6. Increase k← k+1 and go to Step 1.

Remark 5. In Step 4, for systems with a large number of states the solution of(2.8) is to be
preferred, while for systems with moderate state dimension and large control horizon the solution
of (2.7) is expected to be more convenient [22].

Remark 6. Notice that for the calculation of the optimal control input in(2.10), it is not necessary
to store and use the full matrices/vectors in(2.15a). The first m rows will suffice.

Remark 7. Notice that(3.4)and(3.1) imply that the current (fall-back) control input is defined as
the corresponding optimal one computed at the previous decision timepoint, i.e. uk = uk|k−1.

If, for the current deviation state/target(bs,w0), the optimal active set is not found in the table,
then Step 4 is executed: The optimal input sequence is calculated for this(bs,w0) and the corre-
sponding information is added to the table, in time (we assume) for the next stagek+ 1. When
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these computations are not completed prior to the next sampling time, as may happen in practice,
several modifications to the algorithm are needed. Since we need to adjust the reserve sequence
vres in Step 5 without knowing the results of Step 4, we leave this sequence unchanged, except to
shift it forward one interval, as in (3.1). When, at some future time point, the computations for the
given pair(bs,w0) are completed, we add the corresponding information to the table. We also up-
datevres with the newly available optimal sequence (with the obsolete entries for the earlier stages
removed) provided that the reserve sequence was not updated in the interim as a result of finding
an optimal sequence in the table. Moreover, it is important to notice that, in (3.3),bprev

s denotes
the target around which the reserve sequence was computed, and ¯uk−1 in (3.4) is the corresponding
input target. We report in Section 4 on an example in which there are delays in performing the
computations in Step 4.

3.3 Properties

We now present the main theoretical properties of the proposed partial enumeration MPC algo-
rithm. In particular, Theorem 4 states that the proposed partial enumeration MPC algorithm retains
the nominal constrained closed-loop stability of the corresponding “optimal” MPC algorithm.

We assume thatP in (2.7) is chosen as the optimal cost-to-go matrix of the following “uncon-
strained” linear quadratic infinite horizon problem:

min
w,v

∞

∑
j=0

1
2

{
w′jQwj +v′jRvj +2w′jMv j

}
(3.6a)

subject to:
w j+1 = Awj +Bvj , j = 0,1,2, . . . . (3.6b)

With such a choice ofP and given the corresponding stabilizing gain matrix

K =−(R+B′PB)−1(B′PA+M′), (3.7)

the unconstrained “deviation” input and state evolves as:

v j = Kw j , w j+1 = Awj +Bvj = AKw j , j = 0,1,2, . . . , (3.8)

in whichAK = A+BK is a strictly Hurwitz matrix, and the optimal objective value is1
2wT

0 Pw0. We
also defineO∞ to be the set of target/initial state pairs such that the unconstrained solution (3.8)
satisfies the constraints (2.7c) at all stages. Formally,

O∞ = {(bs,w) |Dv j ≤ d−Dsbs for all v j , w j satisfying (3.8), withw0 = w}. (3.9)

We say thatO∞ has afinite representationif this infinite set of inequalities can be reduced to a finite
set.

Remark 8. The formulae(3.8)can be used to eliminate the vj and wj from this definition and write
O∞ as an infinite system of inequalities involving only w and bs, as follows:

O∞ = {(bs,w) |DwA j
Kw≤ d−Dsbs for all j = 1,2, . . .}, (3.10)

where Dw = DK. Notice that O∞ is non-empty since(bs,0) ∈O∞ for any “feasible” target bs, i.e.
such that(2.4d)holds.
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We now define the following “parameterized” sets:

W(bs) ={w|(bs,w) ∈O∞}, (3.11)

WN(bs) ={w|w j andv j , optimal solution to (2.7) withw0 = w, satisfywN ∈W(bs)}. (3.12)

Notice thatWN(bs) is the set of initial states such that the optimal state trajectory entersW(bs) at
most inN timesteps. We have the following results.

Lemma 1. Assume that bs satisfies Dsbs < d, that W̃(bs) = {w|Dww ≤ d−Dsbs} is bounded,
and that AK has all eigenvalues inside the open unit circle. Then, W(bs) is non-empty, is finitely
determined and contains the origin in its interior.

Proof. In the notation of [7], we setA← AK andC← I , the output constraint setY is equal to
W̃(bs), andW(bs) is O∞(A,C,Y). Thus, finite determination ofW(bs) follows as an application
of [7, Thm. 4.1]. Moreover, from [7, Thm. 2.1] we have that the origin is in the interior ofW(bs)
becauseAK is asymptotically stable (notice that only Lyapunov stable is required for this result)
andW̃(bs) contains the origin in its interior sinceDsbs < d. Clearly, this also implies thatW(bs) is
non-empty.

Lemma 2. Suppose the assumptions of Lemma 1 hold and that P in(2.7) is chosen as the solution
of the Riccati equation associated with(3.6). We then have

W(bs)⊆W1(bs)⊆W2(bs)⊆ ·· · . (3.13)

Moreover, WN(bs) is positively invariant for the system̄w j+1 = Aw̄ j + Bv̄ j with v̄ j defined as the
first component of the control sequence solution of(2.7).

Proof. Result (3.13) is proved by induction. Notice first thatW(bs)⊆W1(bs), because if ¯w∈W(bs)
the input sequence optimal solution to (2.7) withN = 1 andw0 = w̄ is simplyv∗ = v∗0 = Kw0 = Kw̄,
with K given in (3.7). [This value is feasible and yields the minimum cost1

2w′0Pw0; see also [26,
Lemma 1]]. Assume now that ¯w∈Wl (bs) for somel > 0 and letv∗ = (v∗0,v

∗
1, . . . ,v

∗
l−1) andw∗ =

(w∗0,w
∗
1, . . . ,w

∗
l ) be the corresponding optimal input and state sequences in (2.7) withN = l and

w0 = w̄. By definition ofWl (bs) we have thatw∗l ∈W(bs), and thereforev∗ = (v∗0,v
∗
1, . . . ,v

∗
l−1,Kw∗l )

and(w∗0,w
∗
1, . . . ,w

∗
l ,AKw∗l ) are the optimal input and state sequences in (2.7) withN = l + 1 and

w0 = w̄. Moreover,w∗l+1 = AKw∗l ∈W(bs) and therefore ¯w∈Wl+1(bs), that isWl (bs)⊆Wl+1(bs).

To prove the second claim, suppose that ¯w j ∈WN(bs) and letv∗ = (v∗0,v
∗
1, . . . ,v

∗
N−1) andw∗ =

(w∗0,w
∗
1, . . . ,w

∗
N) be the solution of (2.7) withw0 = w̄ j . We have that ¯w j+1 = Aw̄ j +Bv̄ j = Aw∗0 +

Bv∗0 = w∗1. It follows from w∗N ∈W(bs) that the solution of (2.7) withw0 = w̄ j+1 is simply
(v∗1, . . . ,v

∗
N−1,Kw∗N) and (w∗1,w

∗
2, . . . ,w

∗
N,AKw∗N), and the terminal stateAKw∗N belongs toW(bs).

Hence,w̄ j+1 ∈WN(bs), as claimed.

We now state our two main results.

Theorem 3. Suppose the assumptions of Lemma 1 hold. Assume that for the current deviation
state w0 there are infinite state and input sequences{w j} and{v j} that satisfy(2.7b)and (2.7c)
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(where these constraints hold forall j) and such that the corresponding objective function in(3.6)
is finite. Then, there exists a finite integer N′ (which depends on w0) such that

w0 ∈WN(bs) for all N ≥ N′. (3.14)

Proof. Since{w j} and{v j} are feasible for the infinite-horizon problem (3.6) subject to (2.7b)
and (2.7c) (where these constraints hold forall j , not just for a finite horizon) and since the cor-
responding objective function is finite, it follows that there are optimal sequences{w∗j} and{v∗j}
that solve this infinite-horizon problem [see e.g. [21, Th. A.3]]. Moreover since the optimal objec-
tive is finite and(Â,Q̂1/2) is detectable, we have that(w∗j ,v

∗
j )→ 0 for this optimal sequence [see

proof of Theorem 1 in [26] and also [8, p.251]]. Since under the assumptions of Lemma 1,W(bs)
contains an open neighborhood of the origin, there exists a finite integerN′ such thatw∗j ∈W(bs)
andv∗j = Kw∗j for any j ≥ N′. It follows that{w∗j} and{v∗j} also solves the problem (3.6), (2.7b),
and (2.7c) in which the constraints (2.7c) are applied only at stagesj ≤ N′. Because of our choice
of P, the objective (3.6a) is identical to (2.7a), withN = N′ and for the values(w∗0,w

∗
1, . . . ,w

∗
N′)

and(v∗0,v
∗
1, . . . ,v

∗
N′−1). It follows that these truncated sequences are in fact optimal for the problem

(2.7) with N = N′. Sincew∗N′ ∈W(bs), it follows thatw0 ∈WN′(bs). The proof is completed by
using (3.13).

Theorem 4. The control input uk computed from Algorithm 1 is feasible with respect to(2.3) for
any current deviation state w0 and target bs. Moreover, under the assumptions of Lemma 2, the
outlined procedure is closed-loop nominally stabilizing, that is,(w j ,v j)→ 0 for any w0 ∈WN(bs).

Proof. For the first statement, we check that the constraint is satisfied whether the input is calcu-
lated in steps 1., 2., or 3. If in step 1., thenuk is obtained from (2.10) and (2.7), so the bound (2.3)
is enforced explicitly. If in step 2., then from the problem (2.7) at the previous time stepk−1, we
have by settingj = 1 in (2.7c) thatDuk = Dūk−1 +Dvres

0 = Dūk−1 +Dv∗1 ≤ d, as required. If step
3. is used, then again the boundDuk ≤ d is applied explicitly in solving the short control horizon
version of (2.7).

For the second statement, we have for the nominal case that(x̄k, ūk) is independent ofk and that
bs = bprev

s at all steps. Hence, if the step is not computed in step 1., it is certainly assigned in step 3.
In either case, the overall sequence of inputs will be identical to the sequence obtained by solving
(2.7) at the first stage, with inputs beyond stageN obtained from (3.8) forj ≥ N. (Feasibility of
the “tail” of the sequence follows fromw0 ∈WN(bs).) It follows from our assumptions onAK that
(w j ,v j)→ 0, as claimed.

4 Application examples

In this section we present a number of examples to evaluate the proposed partial enumeration algo-
rithm and compare it with a commercial active-set solver,qpsol . All simulations are performed
using Octave2 on a 1.2 GHz PC running Debian Linux, and time is measured with the function

2Octave (www.octave.org ) is freely distributed under the terms of the GNU General Public License.
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cputime . In all examples the terminal penaltyP is chosen as the solution of the correspond-
ing Riccati equation. Partial enumeration solvers are implemented, for backup calculation of a
suboptimal input, withδmax = 0.0001 and short control horizon of̄N = 3.

For each partial enumeration solver the following performance indices are considered.

• Optimality rate:

OR :=
Nopt

Ntot
(4.1)

whereNopt is the number of decision timepoints in which the optimal solution was found in
the table andNtot is the overall number of decision timepoints.

• Suboptimality index:

SI :=
|Φ−Φ∗|

Φ∗
(4.2)

whereΦ is the achieved closed-loop objective function andΦ∗ is the optimal one (obtained
by injecting the optimal input at each decision timepoint).

• Average speed factor:

ASF :=
T∗aver

Taver
(4.3)

whereT∗averandTaverare the average times required to compute the optimal input withqpsol
and the (sub)optimal one with the partial enumeration solver, respectively.

• Worst-case speed factor:

WSF :=
T∗max

Tmax
(4.4)

in which T∗max andTmax are the maximum times required to compute the optimal input with
qpsol and the (sub)optimal one with the partial enumeration solver, respectively.

4.1 Example #1

The first example is a stable system withm= 3 inputs,p = 2 outputs andn = 12 states, in which
the sampling time is 1 sec and the normalized inputs must satisfy the constraints:−1≤ uk ≤ 1.
The gain matrix and system’s eigenvalues are:

G =
[

1.000 0.0610 0.419
−0.109 0.255 −0.748

]
λ (A) = {0.433±0.863i, 0.670±0.675i, 0.812±0.514i,

0.836±0.454i, 0.737, 0.819, 0.935, 0.908}

The MPC regulator is designed with the following parameters:N = 100,Q=C′C, R= 0.01Im, M =
0, and thus the possible different active sets are 3200 = 2.656×1095. Several partial enumeration
solvers are compared: PE1, PE25, PE50, PE100 and PE200 use an active-set table of 1, 25, 50,
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Table 1: Example #1 performance indices.
OR SI ASF WSF

SH – 6.083 523 240
PE1 0.888 0.0580 302 230
PE25 0.890 0.0537 225 46.0
PE50 0.891 0.0537 181 20.9
PE100 0.892 0.0537 135 17.8
PE200 0.894 0.0537 89.6 14.4

100 and 200 entries, respectively. As a comparison another solver is also considered: SH always
computes and injects the optimal solution of (2.8) with a short control horizon ofN̄ = 3.

The different solvers are compared in a 20,000 decision timepoints simulation featuring 20
random step disturbances acting on the states, 20 random setpoint changes and normally distributed
output noise. A snap-shot of the closed-loop trajectories for inputs and outputs obtained with the
optimal solver, the PE25 solver and the SH solver are reported in Figure 1 and 2. In Table 1
we report the performance indices achieved by each solver. From this table it is evident that the
use of a short control horizon, which certainly reduces the computational burden, can cause severe
performance degradation (SH is more than 600% suboptimal), while partial enumeration allows a
fast computation of the optimal solution most of the times, with an overall much minor performance
degradation (for instance PE25 is 5.4% suboptimal). From Figures 1–2, we can notice that SH is
driving the inputs and outputs away from their targets, i.e. the controller is not stabilizing in that
part of the simulation.

In Figure 3 we present the cumulative frequency vs the number of entries scanned in the table
by each partial enumeration solver. From Figure 3 we can notice that in order to find the optimal
solution it is necessary to scan only a few table entries in most of decision timepoints, i.e. to check
a limited number of active sets before finding the optimal one.

In Figure 4 we describe of the evolution in time of the active-set table for PE25 during the
simulation, quantified by the following indices:

Rd(k,0) =
D(k,0)

Ne
, Rd(k,k−Ne) =

D(k,k−Ne)
Ne

(4.5)

whereD(k, j) is the number of table entries at timek that are not in the table at timej, while Ne

is the number of all entries. From Figure 4 we can notice that the active-set table changes over
time to adjust to new disturbances and operating conditions, where different active sets become
“popular” and formerly popular active sets become “obsolete” (and eventually are taken out of the
table). This adaptation is a key feature of the proposed method since it allows us, despite the fact
that a large number of different active sets are visited (PE25 visited 2159 different active sets), to
use small tables, thereby guaranteeing low maximum and average scanning time, but still obtaining
a high optimal hit rate with nearly optimal closed-loop performance.

The effect of the delay in solving the MPC problem in Step 4 (which is executed when the
current deviation state/target pair is not represented in the table) was investigated by introducing a
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Figure 1: Closed-loop trajectories for inputs obtained with optimal, PE25 and SH solvers.
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Figure 2: Closed-loop trajectories for outputs obtained with optimal, PE25 and SH solvers.
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Figure 3: Example # 1: cumulative frequency of finding an optimal entry versus number of entries
scanned. Most of the benefit is achieved with small tables, and then optimality increases only
slowly with table size.

parameterα by which we inflate the time required for solution of the full MPC problem. Specif-
ically, if it is neccessary to perform Step 4 at timek, we assume that the solution will become
available for insertion in the table at timekavail defined by

kavail = k+
⌈

α
TQP(k)

Ts

⌉
,

whereTQP(k) is the time required to solve the full QP for this MPC andTs is the sampling time.
Figure 5 presents the results of this study for Example #1, in the case in which the table contains 25
entries. Note that, even for the small number of table entries, the suboptimality indexSI remains
close to its optimal value of 0 forα up to 102 and within a factor of one atα = 103. Forα = 104,
the performance is as poor as the short-horizon backup strategy.

4.2 Example # 2: Crude Distillation Unit

The last example is a crude distillation unit model withm= 32 inputs,p = 90 outputs andn = 252
states. Inputs and outputs are normalized, and the inputs must satisfy the constraints:umin ≤ uk ≤
umax with umax−umin = 2 ·1m. Only four outputs, representing the quality of the crude distillation
unit side products, have desired setpoints, and the MPC regulator is designed with the following
parameters:N = 25, Q = C′C, R= 20Im, M = 0. The number of possible different active sets is
3800 = 4.977×10381. Response of the “true” plant is simulated by adding, to the nominal model
response, unmeasured random step disturbances on the crude composition, on the fuel gas quality
and on the steam header pressure, and normally distributed output noise.
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Figure 4: Example #1: table relative differences for PE25. The top figure shows that the original
table is completely replaced as plant operation evolves. The bottom figure shows that the table
turns over quickly during some periods and remains fairly constant during other periods.

Table 2: Example #2 performance indices.
OR SI ASF WSF

PE1 0.654 6.9·10−5 610 399
PE25 0.752 6.8·10−5 220 39.2
PE50 0.762 6.8·10−5 162 20.1
PE100 0.770 6.8·10−5 121 10.1
PE200 0.786 6.8·10−5 83.3 4.79

Four partial enumeration solvers are compared: PE1, PE25, PE50, PE100, PE200 use an active-
set table of 1, 20, 50, 100 and 200 entries, respectively. The different solvers are compared on a
5 day (7201 decision timepoints) simulation with 10 random disturbances and 5 setpoint changes.
In Table 2 we report the performance indices obtained with each solver. In Table 2 we see that
partial enumeration solvers provide low suboptimality with remarkable speed factors, especially
when small tables are used. This large-scale example is particularly challenging since on average
qpsol takes about 26 seconds to compute the optimal input with a worst-case of about 53 sec-
onds. In comparison, PE25 requires in the worst-case about 1.3 seconds, and is therefore definitely
applicable for real-time implementation with sampling time of 1 minute. Active constraints are the
rule in this example. On average, about 9 inputs (out of 32) are saturated at their (lower or upper)
bound at each sample. The fully unconstrained solution (LQ regulator) is not feasible atanysample
time in the simulation. The crude distillation unit operation under MPC control is always on the
boundary of the feasible region, which we expect to be typical of large-scale, multivariable plants.
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Figure 5: Example #1: suboptimality versus computational delay factor. For a wide range of the
computational delay, partial enumeration provides almost optimal performance.

5 Conclusions

Partial enumeration (PE) has been presented as a method for addressing large-scale, linear MPC
applications that cannot be treated with current MPC methods. Depending on the problem size and
sampling time, online QP methods may be too slow, and offline feedback storage methods cannot
even store the full feedback control law. The PE method was shown to have reasonable nominal
theoretical properties, such as closed-loop stability. But the important feature of the method is
its ability to handle large applications. The industrial distillation large example presented demon-
strates suboptimality of less than 0.01%, with average speedup factors in the range of 83–220, and
worst case speedups in the range of 4.8–39.2. Small tables with only 25–200 entries were used to
obtain this performance. These small tables contain the optimal solution at least 75% of the time
given what we think is an industrially relevant set of disturbances, noise, and setpoint changes.

Many extensions of these basic ideas are possible. If one has access to several processors,
the storage table can be larger and hashed so that different CPUs search different parts of the
table. Several CPUs also enable one to calculate more quickly the optimal controls missing from
the current table. One can envision a host of strategies for populating the initial table depending
on the user’s background and experience, ranging from an empty table in which all table entries
come from online operation, to more exhaustive simulation of all disturbance scenarios expected in
normal plant operation. In this work we presented two backup strategies for use when the optimal
control is not in the current table: a restriction of the previous, optimal trajectory, or a short control
horizon solution. One can readily imagine other backup strategies that may prove useful in practice.

Of course, a complete solution for large-scale problems remains a challenge. The PE method
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pushes back the current boundary between what size application is and is not tractable using MPC.
But the boundary remains and may always remain, and practitioners would benefit from other
alternatives that work well for the largest problems they face. A major benefit of having the ability
to solve large MPC problems is to enable benchmarking and evaluating other, less computationally
demanding, but perhaps less optimal, proposed control alternatives.
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A Additional definitions

The matrices/vectorsH ∈RNm×Nm, Gw ∈RNm×n, A ∈R(N+1)n×n, Bs∈RNq×n, b̄∈RNq that appear
in (2.8)–(2.9) are defined as follows.

H = B′QB +R +M ′B +B′M , Gw = (B′Q +M ′)A ,

A =


−D 0 · · · 0

0 −D
...

...
...

... ... 0
0 · · · 0 −D

 , Bs =


Ds
...
...

Ds

 , b̄ =


−d
...
...
−d

 , (A.1)

in which

A =


I
A
A2

...
AN

 , B =


0 0 · · · 0
B 0 0

BA B
...

...
...

... ... 0
BAN−1 BAN−2 · · · BA B

 ,

Q =


Q 0 · · · 0

0 Q
...

...
...

... ... 0
0 · · · 0 Q 0
0 · · · · · · 0 P

 , R =


R 0 · · · 0

0 R
...

...
...

... ... 0
0 · · · 0 R

 , M =


M 0 · · · 0

0 M
...

...
...

... ... 0
0 · · · 0 M
0 · · · · · · 0

 (A.2)


