Consider the infinite sequence \(\{\Phi_k\} \) that is assumed to satisfy

\[
\Phi_{k+j} \leq \Phi_k + S_{k,j}, \quad \Phi_k \geq 0
\]

for all \(k, j \in \mathbb{I}_+ := \{0, 1, 2, \ldots\} \). We assume:

A1: For all \(k \in \mathbb{I}_+ \), for all \(\varepsilon > 0 \), there exists an integer \(I(k, \varepsilon) \) such that \(S_{k,j} \leq \varepsilon \) for all \(j \geq I(k, \varepsilon) \).

Proposition 1 Suppose **A1** is satisfied. Then, for all \(\Phi_0 \geq 0 \), the infinite sequence \(\{\Phi_k | k \in \mathbb{I}_+\} \) is bounded.

Proof: Choose any \(\varepsilon > 0 \). By **A1**, there exists a positive integer \(I(0, \varepsilon) \) such that \(S_{0,j} \leq \varepsilon \) for all \(j \geq I(0, \varepsilon) \). Hence

\[
\Phi_k \leq \Phi_0 + \varepsilon \quad \text{for all } k \geq I(0, \varepsilon).
\]

Also, there clearly exists a \(\tilde{\Phi} \) such that

\[
\Phi_k \leq \tilde{\Phi} \quad \text{for all } k \in \{0, 1, \ldots, I(0, \varepsilon)\}.
\]

Hence

\[
\Phi_k \leq \tilde{\Phi} := \max\{\tilde{\Phi}, \Phi_0 + \varepsilon\} \quad \text{for all } k \in \mathbb{I}_+.
\]

so that \(\Phi_k \in [0, \tilde{\Phi}] \) for all \(k \in \mathbb{I}_+ \).

Proposition 2 Suppose **A1** is satisfied. Then, for all \(\Phi_0 \geq 0 \), the infinite sequence \(\{\Phi_k | k \in \mathbb{I}_+\} \) converges to a \(\Phi^* \in [0, \tilde{\Phi}] \).
Figure 1: Nonmonotonic cost sequence with its upper and lower bounding sequences.

Figure 2: Nonconvergent cost sequence with $\Phi - \Phi = \delta > 0$.

Proof: Consider the two bounding sequences $\{\Phi_k\}$ and $\{\Phi_k\}$ defined by

$$
\Phi_k := \sup_{j \geq k} \Phi_j \quad \Phi_k := \inf_{j \geq k} \Phi_j
$$

These sequences are illustrated in Figure 1. By Proposition 1, the sequence $\{\Phi_k\}$ is bounded, so that both Φ_k and Φ_k are finite for all $k \geq 0$. In fact, both lie in the interval $[0, \Phi]$. The sequence $\{\Phi_k\}$ is nonincreasing and bounded from below (by 0) so that it converges to $\Phi = \limsup \{\Phi_k\} \in [0, \Phi]$. Similarly the sequence $\{\Phi_k\}$ is nondecreasing and bounded from above (by Φ) so that it converges to $\Phi = \liminf \{\Phi_k\} \in [0, \Phi]$ with $\Phi \leq \Phi$. Both Φ and Φ are accumulation points of the sequence $\{\Phi_k\}$. In fact, all the accumulation points of $\{\Phi_k\}$ lie in the interval $[\Phi, \Phi] \subset [0, \Phi]$.

Suppose, contrary to what is to be proven, that $\Phi \neq \Phi$, and let $\delta := \Phi - \Phi > 0$ as depicted in Figure 2. Because Φ is an accumulation point of $\{\Phi_k\}$, there exists a positive integer I_1 such that

$$
\Phi_{I_1} \leq \Phi + \delta/4
$$

By assumption A1, there exists an integer I_2 such that $S_{I_1, j} \leq \delta/4$ for all $j \geq I_2$. Therefore, from Equation 1

$$
\Phi_k \leq \Phi_{I_1} + \delta/4 \quad \text{for all } k \geq I_1 + I_2
$$

Combining the two preceding inequalities gives

$$
\Phi_k \leq \Phi + \delta/2 \quad \text{for all } k \geq I_1 + I_2
$$
Substituting the definition of δ in the last inequality gives

$$\Phi_k \leq \overline{\Phi} - \delta/2 \quad \text{for all } k \geq I_1 + I_2$$

But this inequality contradicts the fact that $\overline{\Phi}$ is an accumulation point of $\{\Phi_k\}$. Hence the sequence $\{\Phi_k\}$ converges to a $\Phi^* = \Phi = \overline{\Phi} \in [0, \overline{\Phi}]$. ■