
2
TWMCC ? Texas-Wisconsin Modeling and Control Consortium

1
Technical report number 2001-01

The Velocity Algorithm LQR: a survey

Gabriele Pannocchia and James B. Rawlings
Department of Chemical Engineering

University of Wisconsin-Madison
Madison, WI 53706

May 18, 2001

Abstract
In this report the velocity algorithm – the one the computes the

input change given the state change and the current measurement –
is studied under the general framework of LQ regulators. Similarities
and differences with the standard algorithm are discussed in order to
emphasize advantages and disadvantages of each formulation.

Keywords
Predictive Control, Linear Quadratic Regulation, Velocity Algorithm,
State augmentation

1 Introduction

The velocity algorithm computes, at each time k, the input change ∆uk instead of the
input value uk, using the state change ∆xk instead of the state value xk. The velocity
form is used in the digital implementation of PID controllers (e.g. [5]) in order to avoid
wind-up. Moreover, the original industrial formulations of Model Predictive Control [7] [1]
[2] computed the input change ∆u from a discrete impulse response model. More recently,
we can find other examples of the velocity algorithm in [4] [6] [3].

We present this algorithm under the general framework of Linear-Quadratic regulators.
We show what conditions should be satisfied in order to obtain a complete equivalence
between the velocity algorithm (∆x – ∆u) and the traditional algorithm (x – u). Moreover,
we address cases for which the velocity algorithm cannot be used.

1



TWMCC Technical Report 2001-01 2

2 Algorithm formulation

2.1 The model

Given a linear time-invariant discrete system defined in terms of state vector xk ∈ Rn,
input vector uk ∈ Rm, output vector yk ∈ Rp and matrices (A,B, C), we consider the
following new variables:

∆xk = xk − xk−1 zk = yk − yt ∆uk = uk − uk−1 (1)

where yt is the output target, assumed constant. Next we consider the following augmented
state-space model:

x̃k =
[
∆xk

zk

]
ũk = ∆uk Ã =

[
A 0

CA I

]
B̃ =

[
B

CB

]
C̃ =

[
0 I

]
(2)

which leads to the following new model equation:

x̃k+1 = Ãx̃k + B̃ũk x̃0 given

zk = C̃x̃k (3)

2.2 The regulator

The regulator is formulated as an infinite horizon optimal control problem

min
ũk

1
2

∞∑
k=0

x̃T
k Q̃x̃k + ũT

k R̃ũk (4)

subject to eqn. 3, where R̃ is a symmetric positive definite matrix of dimension m, and

Q̃←
[
0 0
0 Q

]
(5)

in which Q symmetric positive definite matrix of dimension p.
The optimal solution of eqn. 4 is given by

ũk = −(R̃ + B̃T SB̃)−1B̃T SÃx̃k

= −KLQx̃k (6)

where S is the steady-state solution of the Riccati equation

0 = ÃT SÃ− S + Q̃− ÃT SB̃(R̃ + B̃T SB̃)−1B̃T SÃ (7)

Once ũk is computed, the effective input injected into the plant is

uk = uk−1 + ũk (8)

Therefore, the velocity algorithm requires the storage of the previous control action.



TWMCC Technical Report 2001-01 3

2.3 The estimator

The augmented state vector x̃k, in general, cannot be completely measured, so reconstruc-
tion of the state is required. The optimal Kalman filter is chosen and its algorithm is
summarized here.

The model equation used by the estimator is

x̃k+1 = Ãx̃k + B̃ũk + G̃w̃k x̃0 given (9)

where w̃k is a zero-mean random sequence with covariance Q′
w̃. The initial value is modeled

as a Gaussian variable

E{x̃0} = ˆ̃x0 E
{

(x̃0 − ˆ̃x0)(x̃0 − ˆ̃x0)T
}

= P0|−1 (10)

The vector of measurements is
yk − yt = C̃x̃k + ṽk (11)

where ṽk is zero-mean random sequence with covariance Rṽ.
At each time k the measurement yk is assumed to be known; the prediction of the

current state vector ˆ̃xk|k−1 and its covariance Pk|k−1, given the model and the previous
measurements (see eqs. 14) are known. The Kalman filter gain matrix is given by

Lk = Pk|k−1C̃
T

[
C̃Pk|k−1C̃

T + Rṽ

]−1
(12)

Thus, the filtering equations are

ˆ̃xk|k = ˆ̃xk|k−1 + Lk

[
(yk − yt)− C̃ ˆ̃xk|k−1

]
Pk|k = Pk|k−1 − LkC̃Pk|k−1 (13)

Finally, the future state vector and its covariance matrix are predicted by

ˆ̃xk+1|k = Ãˆ̃xk|k + B̃ũk

Pk+1|k = ÃPk|kÃ
T + G̃Q′

w̃G̃T (14)

This algorithm is repeated at each time and the updated state vector ˆ̃xk|k is used by the
regulator in eqn. 6.

3 Key-issues of the velocity algorithm

There are two issues that require a detailed analysis:

• initialization of the model (ˆ̃x0 and P0);

• choice of the noise model (G̃, Q′
w̃ and Rṽ).



TWMCC Technical Report 2001-01 4

In order to address this problem we derive the velocity algorithm from the traditional
formulation (x – u); then we present the equations that permit us to build an algorithm
in the traditional form given an algorithm in the velocity form.

In the traditional formulation, the following general model is considered (in which the
integrated input and output disturbance cases are covered):

xk+1 = Axk + Buk + Bddk + Gwx
k

dk+1 = dk + Gdw
d
k

yk = Cxk + Cddk + vk (15)

where d is the integrated input - output disturbance, Bd and Cd are matrices of appropriate
dimension, wx

k , wd
k and vk are random sequences with the following covariance matrices:

E{wx
k(wx

k)T } = Qx E{wd
k(w

d
k)

T } = Qd (16a)

E{wx
k(wd

k)
T } = Qxd E{vkv

T
k } = Rv (16b)

3.1 Initialization of the model

First, we consider the evolution of standard deterministic systems at time k, given the
initial value x0 and d0 and remembering that the disturbance is constant, we can write

xk = Axk−1 + Bddk−1

= Akx0 +
(
Ak−1 + · · ·+ I

)
Bdd0 +

(
Ak−1Bu0 + · · ·Buk−1

)
(17)

from which

xk − x0 =
(
Ak − I

)
x0 +

(
Ak−1 + · · ·+ I

)
Bdd0 + Ak−1Bu0 + · · ·+ Buk−1 (18)

Then let us consider the evolution of the autonomous systems in the velocity form

∆xk = A∆xk−1 + B∆uk−1

= Ak∆x0 + Ak−1B∆u0 + · · ·+ B∆uk−1 (19)

from which

xk − x0 = AΣ∆x0 + ΣB(u−1) + Ak−1B∆u0 + · · ·+ B∆uk−1 (20)

in which Σ =
∑k−1

j=0 Aj , and u−1 is the input at time k = −1. Comparing the right hand
sides of eqs. 18 and 20, with some matrix algebra we obtain (under the assumption that
(A− I)−1 exists)

A∆x0 = (A− I) x0 + Bdd0 −Bu−1 (21)

If A−1 exists, we can rewrite eqn. 21 as:

∆x0 =
(
I −A−1

)
x0 + A−1Bdd0 −A−1Bu−1 (22)



TWMCC Technical Report 2001-01 5

Eqn. 21 or 22 is fundamental for the initialization of the algorithm because it ensures that
the standard and the velocity models evolve in a congruent manner, i.e. they compute the
same state xk at each time. The other equation that is useful for the initialization of the
algorithm is

z0 = Cx0 + Cdd0 − yt (23)

Given the initial estimates in the traditional form, x̂0 and d̂0 and using eqs 22 and
23, we can compute the initial estimate and its covariance matrix in the velocity form, as
reported below: [

∆x̂0

ẑ0

]
=

[
I −A−1 A−1Bd

C Cd

] [
x̂0

d̂0

]
+

[
−A−1Bu−1

−yt

]
(24)

P0|−1 = E

{[
∆x0 −∆x̂0

z0 − ẑ0

] [
∆x0 −∆x̂0

z0 − ẑ0

]T
}

=
[

P 11
0 P 12

0

(P 12
0 )T P 22

0

]
(25)

where

P 11
0 = (I −A−1)P x

0 (I −A−1)T + A−1BdP
d
0 (A−1Bd)T + (I −A−1)P xd

0 (A−1Bd)T +

A−1Bd(P xd
0 )T (I −A−1)T

P 12
0 = (I −A−1)P x

0 CT + A−1BdP
d
0 CT

d + (I −A−1)P xd
0 CT

d + A−1Bd(P xd
0 )T CT

P 22
0 = CP x

0 CT + CdP
d
0 CT

d + CP xd
0 CT

d + Cd(P xd
0 )T CT (26)

in which:

P x
0 = E{(x0 − x̂0)(x0 − x̂0)T } P d

0 = E{(d0 − d̂0)(d0 − d̂0)T }
P xd

0 = E{(x0 − x̂0)(d0 − d̂0)T }

3.2 Choice of the noise model

From eqn. 15 we can derive the corresponding velocity algorithm:

∆xk+1 = A∆xk + B∆uk + BdGdw
d
k−1 + G(wx

k − wx
k−1)

zk+1 = CA∆xk + zk + CB∆uk + CBdGdw
d
k−1 + CG(wx

k − wx
k−1) + CdGdw

d
k

yk − yt = zk + vk (27)

where yt is the target. The previous equations can be written in the following augmented
state-space:

[
∆xk+1

zk+1

]
=

[
A 0

CA I

] [
∆xk

zk

]
+

[
B

CB

]
∆uk +

[
G BdGd 0

CG CBdGd CdGd

]wx
k − wx

k−1

wd
k−1

wd
k


yk − yt =

[
0 I

] [
∆xk

zk

]
+ vk (28)



TWMCC Technical Report 2001-01 6

Let

G̃ =
[

G BdGd 0
CG CBdGd CdGd

]
and w̃k =

wx
k − wx

k−1

wd
k−1

wd
k

 ṽk = vk (29)

we obtain using eqn. 16:

Q′
w̃ = E{w̃kw̃

T
k } =

 2Qx −Qxd Qxd

−QT
xd Qd 0

QT
xd 0 Qd

 Rṽ = E{ṽkṽ
T
k } = Rv (30)

The previous equations contain terms that have meaning only at time k > 0; at time k = 0
we should modify the matrix Q′

w̃ as follows:

Q′
w̃(0) =

 Qx 0 Qxd

0 0 0
QT

xd 0 Qd

 (31)

Thus, with the previous definitions we have obtained the general formulation of the
velocity algorithm given in eqs. 9 and 10. Moreover, these relationships guarantee a corre-
spondence between the obtained velocity algorithm and the given traditional algorithm.

3.3 The standard algorithm derived from the velocity algorithm

In this section we consider the velocity algorithm as given:[
∆xk+1

zk+1

]
=

[
A 0

CA I

] [
∆xk

zk

]
+

[
B

CB

]
∆uk + G̃w̃k

yk − yt =
[
0 I

] [
∆xk

zk

]
+ ṽk (32)

in which w̃k and ṽk are random sequences with covariance matrices Q′
w̃ and Rṽ given.

Moreover, the initial estimate
[
∆x̂0

ẑ0

]
, and its covariance matrix, P0 are given.

Eqs 14 and 12 clearly show that the covariance matrix evolution and the consequent
gain of the Kalman filter depend on the product G̃Q′

w̃G̃T rather than the single matrices
G̃ and Q′

w̃. Therefore, let

Qw̃ = G̃Q′
w̃G̃T =

[
Q11 Q12

(Q12)T Q22

]
(33)



TWMCC Technical Report 2001-01 7

where

Q11 = 2GQxGT + BdGdQd(BdGd)T −BdGdQ
T
xdG

T −GQxd(BdGd)T

Q12 = 2GQx(CG)T + BdGdQd(CBdGd)T −BdGdQ
T
xd(CG)T

−GQxd(CBdGd)T + GQxd(CdGd)T

= Q11C
T + GQxd(CdGd)T

Q22 = 2CGQx(CG)T + CBdGdQd(CBdGd)T − CBdGdQ
T
xd(CG)T

− CGQxd(CBdGd)T + CdGdQ
T
xd(CG)T

+ CGQxd(CdGd)T + CdGdQd(CdGd)T

= CQ11C
T + CdGdQ

T
xd(CG)T + CGQxd(CdGd)T + CdGdQd(CdGd)T (34)

Combining eqs 24, 26, 30 and 34 we obtain the following nonlinear systems:

∆x̂0 = (I −A−1)x̂0 + A−1Bdd̂0 −A−1Bu−1

ẑ0 + yt = Cx̂0 + Cdd̂0

P 11
0 = (I −A−1)P x

0 (I −A−1)T + A−1BdP
d
0 (A−1Bd)T

+ (I −A−1)P xd
0 (A−1Bd)T A−1Bd(P xd

0 )T (I −A−1)T

P 12
0 = (I −A−1)P x

0 CT + A−1BdP
d
0 CT

d + (I −A−1)P xd
0 CT

d

+ A−1Bd(P xd
0 )T CT

P 22
0 = CP x

0 CT + CdP
d
0 CT

d + CP xd
0 CT

d + Cd(P xd
0 )T CT

Q11 = 2GQxGT + BdGdQd(BdGd)T −BdGdQ
T
xdG

T −GQxd(BdGd)T

Q12 −Q11C
T = CGQxd(CBdGd)T

Q22 − CQ11C
T = CdGdQ

T
xd(CG)T + CGQxd(CdGd)T + CdGdQd(CdGd)T

Rṽ = Rv (35)

in which the unknowns are x̂0, d̂0, Bd, Cd, P x
0 , P d

0 , P xd
0 , G, Qx, Gd, Qd, Qxd, Rv. Moreover,

the previous system must be solved with the following constraints:[
P x

0 P xd
0

(P xd
0 )T P d

0

]
≥ 0

[
Qx Qxd

(Qxd)T Qd

]
≥ 0 (36)

Let n be number of states and p be the number of the outputs; in general, the maximum
dimension of an observable disturbance vector is p. In the following table a detail of the
dimensions of each unknown is provided.



TWMCC Technical Report 2001-01 8

Unknown Dimension Properties Ind. elements
x̂0 n× 1 n

d̂0 p× 1 p
Bd n× p np
Cd p× p p2

P x
0 n× n symm. n(n + 1)/2

P d
0 p× p symm. p(p + 1)/2

P xd
0 n× p np
G n× n n2

Gd p× p p2

Qx n× n symm. n(n + 1)/2
Qd p× p symm. p(p + 1)/2
Qxd n× p np
Rv p× 1 p

The number of independent equations of the system in eqn. 35 is given by the independent
element of each Left Hand Side member, as reported in the next table.

Left Hand Side term Dimension Properties Ind. equations
∆x̂0 n× 1 n

ẑ0 + yt p× 1 p
P 11

0 n× n symm. n(n + 1)/2
P 12

0 n× p np
P 22

0 p× p symm. p(p + 1)/2
Q11 n× n symm. n(n + 1)/2

Q12 −Q11C
T n× p np

Q22 − CQ11C
T p× p symm. p(p + 1)/2

Rṽ p× 1 p

Let α be the number of independent unknowns elements and β the number of independent
equations. From the previous tables we have:

α− β = 2p2 + np + n2 (37)

which is greater or equal to 4. For several test problems this system has been solved using
Nonlinear Programming routines (NPSOL or FMINCON).

4 Differences between the traditional and the velocity algo-
rithm

In the previous sections a number of relations have been presented, which establish a
correspondence between the traditional algorithm and the velocity formulation. However,
in this section we present some control problems in which the two algorithms show a
different behavior. These issues are:



TWMCC Technical Report 2001-01 9

• offset-free control in the presence of model-plant mismatch and/or unmodeled dis-
turbances,

• inferential control,

• singular gain systems and non-square systems,

• unreachable targets.

4.1 Offset-free control

In the traditional state-space approach, in order to achieve offset-free control in the pres-
ence of model-plant mismatch and/or unmodeled disturbances it is common to add an
integrated input or output disturbance model, whose estimate is updated by using the
plant measurements. Both of these kinds of disturbance model are covered in eqn. 15.
This “fictitious” disturbance is able to take into account the differences between the plant
and the model and, therefore, it guarantees offset-free control. In particular, the distur-
bance estimate is used to compute the correct target for the state variables xk, by assuming
that the disturbance estimate remains constant in the future. When a disturbance model
is not used, if the plant and the model do not agree, the target calculated for the states is
wrong and the control algorithm shows steady-state offset.

On the other hand, a disturbance model does not appear in the velocity algorithm
except in the initialization of the algorithm itself (see eqs. 24, 26) and in the matrix Qw̃.
However, offset-free control properties of this algorithm are guaranteed by the fact that
the target of the variables ∆xk and zk is always correct (i.e. the target is always zero)
even if the plant and model do not agree.

Let us consider the standard algorithm without disturbance model:

xk+1 = Axk+1 + Buk + Gwx
k

yk+1 = Cxk + vk (38)

with initial estimate x̂0 and initial covariance matrix P x
0 given, in which wx

k and vk are
random sequences with covariances Qx and Rv, respectively. The corresponding velocity
algorithm is (see eqs. 24, 26 and 29):[

∆xk+1

zk+1

]
=

[
A 0

CA I

] [
∆xk

zk

]
+

[
B

CB

]
∆uk +

[
G

CG

]
w̃k

yk − yt =
[
0 I

] [
∆xk

zk

]
+ ṽk (39)

where w̃k and ṽk are random sequences with covariance 2Qx and Rv, respectively. These
two algorithms have the same nominal response but the standard algorithm shows offset
when there is mismatch between the plant and the model. This case is showed in the
simulation section.



TWMCC Technical Report 2001-01 10

4.2 Inferential control

In several control problems the controlled variables are not measured outputs of the process.
When a model of the process is available, estimates of the controlled variables can be
obtained given the plant measurements by using a Kalman filter, provided that these
controlled variables are detectable. This problem, known as inferential control, can be
stated as follows.

Let x ∈ Rn be the state vector, ym ∈ Rp the measured output vector and yc ∈ Rq the
vector of the controlled variable. For ease, we assume that all the controlled variables are
not measured. A generic linear model for this process can be written as:

xk+1 = Axk + Buk

ym
k = Cxk

yc
k = Hxk (40)

From the LQ estimation theory, the state vector x ∈ Rn is detectable given the measure-
ment vector ym ∈ Rp if and only if the Hautus matrix has rank n, i.e. [8]:

rankH =
[
λI −A

C

]
= n ∀λ ∈ C|λ| ≥ 1 (41)

For this kind of problem the corresponding velocity algorithm is:∆xk+1

zm
k+1

zc
k+1

 =

 A 0 0
CA I 0
HA 0 I

∆xk

zm
k

zc
k

 +

 B
CB
HB

∆uk

ym
k =

[
0 I 0

] ∆xk

zm
k

zc
k

 + ṽk (42)

For this system the Hautus test becomes:

rank


λI −A 0 0
−CA (λ− 1)I 0
−HA 0 (λ− 1) 0

0 I 0

 = n + p + q ∀λ : |λ| ≥ 1 (43)

Clearly, for λ = 1 the Hautus matrix has at most rank n + p. Therefore, the state vector
of the velocity algorithm is not detectable and a stable estimator for this systems cannot
be constructed.

Hence, the velocity algorithm is not able to address the problem of inferential control.
There is an exception to this statement and it is when the controlled variables are a linear
combination of the measured outputs, i.e. z = Hy.



TWMCC Technical Report 2001-01 11

4.3 Control of singular systems and systems with more outputs than
inputs

We consider the case of square systems for which the gain matrix is singular. Given a
generic state-space model, described by the following:

xk+1 = Axk + Buk

yk = Cxk (44)

the gain matrix is defined as:
Kp = C(I −A)−1B (45)

The gain matrix exists if and only if (I − A)−1 is defined, i.e. if there are no integrating
modes. Moreover, a process is singular if and only if det(Kp) = 0. For such cases we have
the following result.

Theorem 1 (Singular systems) Given a process for which (A,B) is a controllable (sta-
bilizable) pair, (C,A) is an observable (detectable) pair, and the gain matrix as defined in
(45) is singular, using the state-space representation in (2) the pair (Ã, B̃) is not stabiliz-
able.

Proof. We prove this result by contradiction. Let assume that the pair (Ã, B̃) is stabilizable.
The Hautus Lemma applied to (2) states:

rankH = rank
[
λI − Ã B̃

]
= n + p ∀λ(Ã) : |λ| ≥ 1 (46)

The eigenvalues of Ã are the union of the eigenvalues of A and the eigenvalues of I.
Therefore, the rank condition test must be checked at least for λ = 1. We have:

rankH =
[
I −A 0 B
−CA 0 CB

]
= rankHr =

[
I −A B
−CA CB

]
= n + p (47)

The matrix Hr is square and full rank, therefore invertible. Using the inversion matrix
theorem, under the assumption that (I −A)−1 exists, the inverse of Hr can be written as
follows:

H−1 =
[
(I −A)−1(I −BΓ−1CA(I −A)−1) −(I −A)−1BΓ−1

−Γ−1CA(I −A)−1 Γ−1

]
(48)

in which the common term Γ−1 is given by:

Γ−1 = [CB + CA(I −A)−1B]−1 = [C(I −A)−1B]−1 = K−1
p (49)

which is in contradiction with the singularity of the process gain. �

For non-square systems with more controlled variables than manipulated variables we
have the following result.



TWMCC Technical Report 2001-01 12

Theorem 2 Given a linear system with m inputs and p outputs, with p > m, (A,B)
stabilizable and (C,A) detectable, the corresponding velocity algorithm augmented system
in (2) is not stabilizable.

Proof. Let n be the number of states, from the Hautus lemma we have that the augmented
system (2) is stabilizable if and only if

rankH =
[
λI −A 0 B
−CA (λ− 1)I CB

]
= n + p, ∀λ ∈ C : |λ| ≥ 1 (50)

For λ = 1, we have:

rankH = rank
[
I −A B
−CA CB

]
≤ n + m < n + p (51)

from which it follows immediately that the augmented system is not stabilizable. �

These results prevent us from using the velocity algorithm in infinite horizon MPC
control schemes in the above mentioned cases. A finite horizon strategy can still be used,
as discussed in the next section. It is interesting to point out that for such cases the
standard algorithm can still be applied. The target calculation returns feasible targets
for state and input, and the dynamic optimization computes the control moves to reach
these feasible targets. In general, the reachable output target differs from the desired
one, because of the singularity of Kp or because there are less manipulated inputs than
controlled outputs.

4.4 Unreachable targets

In this section we consider the case where the desired output target cannot be reached. This
possibility occurs when there are no feasible state and input vectors, xs and us respectively,
such that the following system has solution:

xs = Axs + Bus

ȳ = Cxs (52)

For instance, this is the case of singular system or non-square systems with more controlled
outputs than manipulated inputs. Another possibility is that (52) does not admit solution
due to input constraints:

Dus ≤ d (53)

In all such cases, the deviation variable zk = yk − ȳ never becomes zero at steady state
and, clearly, an infinite horizon strategy cannot be implemented because any feasible in-
put sequence would lead to an unbounded objective function. Therefore, a finite horizon
approach must be chosen and, in general, stability of the MPC controller cannot be guar-
anteed. In fact, an equality constraint on the terminal state cannot be enforced because
the corresponding quadratic program would be infeasible regardless the horizon length.



TWMCC Technical Report 2001-01 13

The finite horizon objective function can be written as follows:

Φ =
N−1∑
k=0

[(yk − ȳ)T Q(yk − ȳ) + ∆uT
k S∆uk] + x̃T

NΠx̃N (54)

in which Π is the finite penalty matrix, which can be chosen to improve stability of the
controller. At each sampling time the control sequence π = [∆u0,∆u1, . . .]T is computed
as solution of the following quadratic program:

min
π

1
2
πT Hπ + hT π (55)

subject to the following input constraint:

Θπ ≤ θ (56)

The matrix H and the vector h can be computed by expanding the objective function (54)
and using the model equation (2) to replace the state variables in terms of the input. In
particular, it can be shown that the linear term has the following form:

h = α∆x0 + βz0 (57)

in which α ∈ RNm×n, β ∈ RNm×p are appropriate matrices. The input constraint matrix
and vector are reported below:

Θ =



I 0 · · · 0
I I
...

. . .
...

I I · · · I
−I 0 · · · 0
−I −I
...

. . .
...

−I −I · · · −I


; θ =



umax − u−1

...
umax − u−1

−umin + u−1

...
−umax + u−1


(58)

in which u−1 is the previous injected input. In a receding horizon fashion, only the first
input in injected into the plant and the remaining computed input increments are discarded.
More precisely, the injected input is:

u0 = u−1 + ∆u0 (59)

This procedure is then repeated at the next sampling time.
In this section we emphasize two properties of the velocity algorithm, which occur when

the desired output target ȳ cannot be reached:

1. The computed sequence, π, does not become stationary, i.e. π = 0 for all elements.

2. The final steady-state point, i.e. xs and us, depends on the horizon length.



TWMCC Technical Report 2001-01 14

The second property can be easily verified by the use of simulations and evaluating
the final steady state for different horizon lengths. However, we can find the final state by
solving the following nonlinear program:

min
xs,us

|∆0| (60)

subject to:

xs = Axs + Bus

π =
[
∆0 ∆1 · · ·

]T solution of the QP with
∆x0 = 0; z0 = Cxs − ȳ; u−1 = us (61)

This problem returns the steady-state vectors (xs, us) for which the initial control move
of the corresponding quadratic program solution is zero. If ∆u0 = 0, the injected input is
stationary u0 = u−1 = us and so is the state xs because of (61). By solving this nonlinear
program, we can verify that the solution, i.e. the steady state of the closed loop system,
depends on the horizon length. Again, it is important to point out that the position
algorithm finds the final steady-state by solving the target calculation problem, which is
totally unrelated to the dynamic optimization and the horizon length. Using the velocity
algorithm, the final steady-state is not known without solving a NLP as (60) (61), which
is in general difficult to handle.

Now we consider the first property. Let xs and us be the final steady state reached by
applying the velocity algorithm, and let Cxs 6= ȳ. We have the following result.

Theorem 3 (Stationarity of input sequence) Let π be the solution of the quadratic
program (55) (56), with initial point ∆x0 = 0, z0 = Cxs − ȳ and u−1 = xs. Then, there
are cases for which π is not stationary, i.e. π = 0 is not solution of this problem.

Proof. We prove this result by contradiction. The necessary conditions for π to be solution
of (55)(56), is that a vector λ ∈ R2mN exists such that:

Hπ + ΘT λ + h = 0 (62a)

−Θπ + θ ≥ 0 (62b)

λ ≥ 0 (62c)

λi(−Θπ + θ)i = 0 i = 1, . . . , 2mN (62d)

Let assume π = 0 is solution of (62) and let λ ≥ 0 be a vector of appropriate dimension.
Clearly, (62b) and (62c) are satisfied. Θ and θ can be rearranged in such a way that first
n1 ≥ 0 rows correspond to constraints active at steady state, i.e. either (umax − us)i = 0
or (−umax + us)i = 0:

Θ =
[
Θ1

Θ2

]
; θ =

[
0
θ2

]
(63)



TWMCC Technical Report 2001-01 15

Denoting with λ1 the vector formed by the first n1 elements of λ and with λ2 the vector
formed by the remaining elements, from (62d) we have that λ2 = 0. Hence (62a) becomes:

ΘT
1 λ1 + h = 0 (64)

in which
h = βz0 = β(Cxs − ȳ) 6= 0 (65)

It easy to construct cases for which all the elements of h are not zero. Hence, if the rank
Θ1 is less then the length of h, (64) does not admit solution, which is in contradiction
with π = 0 solution of (55) (56). In particular, if no constraints are active at steady state
(non-square or singular system case), if π = 0 from (62d) we have that λ = 0 and, therefore
(62a) does not admit solution since h 6= 0. �

It interesting to point out that in the standard algorithm the solution is stationary,
i.e. π =

[
u0 − us u1 − us · · ·

]
= 0. In this algorithm, when the closed-loop system is at

steady state, we have always h = 0 and, therefore, π = 0, λ = 0 is the optimal solution of the
quadratic program. Thus, the open-loop and the closed-loop control sequence agree. Using
the velocity algorithm, instead, the open-loop control sequence differs from the closed-loop
receding horizon sequence, which is ∆u0 = 0.

5 Case studies

In this section we present two examples. The first one shows the effect of a correct and
incorrect initialization of the velocity algorithm. It is also shown how the velocity algorithm
achieves offset-free control in the presence of plant-model mismatch without an explicit
disturbance model. The second example instead is used to show the behavior of the velocity
algorithm when the set point is not reachable.

5.1 Example # 1

5.1.1 Plant and models

As example, we consider the following SISO plant:

xk+1 = 0.5xk + uk

yk = xk (66)

with initial state x0 = 0.5. The initial estimate for the state is x̂0 = 0.6 with covariance
P x

0 = 0.01. We assume the following model:

xk+1 = 0.5xk + uk + wk

yk = xk + vk (67)

with wk and vk random sequences with covariance Qx = 10−6 and Rv = 10−6, respectively.



TWMCC Technical Report 2001-01 16

The corresponding model in the velocity form is:[
∆xk+1

zk+1

]
=

[
0.5 0
0.5 1

] [
∆xk

zk

]
+

[
1
1

]
∆uk +

[
1
1

]
w̃k

yk − yt = zk + ṽk (68)

with w̃k and ṽk random sequences with covariance Qw̃ = 2 × 10−6 (at time k = 0 the
covariance is Qw̃ = 10−6) and Rṽ = 10−6, respectively.

5.1.2 Controllers

For all controllers, the control objective function is:

Φ(x̂k|k) =
∞∑

j=k

(ŷj|k)
2 + (∆uj)2 (69)

subject to the model chosen (in the traditional or velocity position). Three different con-
trollers are compared:

• Std: LQ controller based on the traditional model (eqn. 67);

• VA1: LQ controller based on the velocity algorithm model (eqn. 68), with correct
initialization (see next section);

• VA2: LQ controller based on the velocity algorithm model (eqn. 68), with wrong
initialization (see next section).

5.1.3 Initialization of the velocity algorithm

The correct initialization of the algorithm, according to eqs 24 and 26, is

∆x̂0 = −0.5 ẑ0 = 0.5 P0 =
[

0.01 −0.01
−0.01 0.01

]
(70)

These are the value used by controller VA1. On the other hand, in order to emphasize the
effect of a wrong initialization of the velocity algorithm, controller VA2 uses the following
initial condition:

∆x̂0 = 0 ẑ0 = 0.5 P0 =
[

0.01 −0.01
−0.01 0.01

]
(71)

5.1.4 Simulation

A simulation is presented here. First each controller is required to track the output from
the initial state to the origin (target). Then, at time td = 10 an input disturbance enters
the plant:

xk+1 = 0.5xk + uk + 0.5
yk = xk (72)



TWMCC Technical Report 2001-01 17

and each controller is required to reject the disturbance. The simulation responses are
reported in Figure 1. Some comments are appropriate:

1. when there is no disturbance, the standard algorithm and the velocity algorithm have
the same response;

2. when the disturbance enters the plant, the traditional algorithm shows offset, while
the velocity algorithm is able to reject the disturbance;

3. the velocity algorithm with wrong initial estimate for ∆x0 has a bad initial behavior
but, when the disturbance enters the plant, it is able to reject it. The initialization
problem has an effect only in the first part of the simulation until the system reaches
the origin.

5.2 Example # 2

We consider the following non-square system with two outputs and one input:

A =
[
0.9 0
0 0.8

]
, B =

[
1
1

]
, C =

[
1 0
0 1

]
(73)

MPC controllers with different finite horizon are compared. For each controller, the
penalty matrices in eqn. 54 are

Q =
[
1 0
0 1

]
, S = 1, Π = Q (74)

It is interesting to note that the final penalty matrix cannot be chosen as the solution of
the Riccati equation since the augmented system is not stabilizable.

We attempt to move both outputs from 0 to 1 but, since there is only one input, we
expect to have offset in both variables. The results of the simulations are reported in
Figure 2. As expected the steady-state value of the closed-loop outputs depends on the
horizon It can be seen that when horizon increases the steady-state outputs approach their
desired targets in a least-square sense, i.e. the value that a standard MPC controller with
target calculation reaches (also shown).

6 Observations and conclusions

In this paper a survey on the velocity algorithm has been presented in order to understand
the theoretical relationship between this model description and the standard state-space
approach.

Below are reported main advantages and disadvantages of this algorithm respect to the
traditional formulation:

• Advantages of the velocity form



TWMCC Technical Report 2001-01 18

(a)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20

y

Time (k)

Std
VA1
VA2

(b)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 5 10 15 20

u

Time (k)

Std
VA1
VA2

Figure 1: Output (a) and Input (b) responses for each controller (Example # 1)



TWMCC Technical Report 2001-01 19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40

y 1

Time (k)

N=2
N=5

N=10
N=20

Std.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

y 2

Time (k)

N=2
N=5

N=10
N=20

Std.

Figure 2: Outputs for velocity MPC controllers with different horizon and MPC with target
calculation .(Example # 2)



TWMCC Technical Report 2001-01 20

1. It does not require the choice of a disturbance model: offset-free control is always
achieved.

2. The choice of the disturbance model affects only the initial estimation of the
state vector x̃0 and the noise matrix G̃, but it does not affect the control law.

3. A target calculation is not required because the target for each state is always
zero.

• Disadvantages of the velocity form

1. If the gain matrix of the system (in case of square system systems) is singular
or there are more controlled variables than manipulated variables (non-square
systems), the augmented system in velocity form is not stabilizable and infinite
horizon cannot be used. In both cases one can still use a finite horizon, but this
does not guarantee nominal stability. A terminal equality constraint cannot be
enforced since the output target cannot be reached in such cases.

2. When the output target is unreachable, the steady state of the closed loop
depends on the choice of the finite horizon.

3. It is not able to control variables that are not measured (inferential control)
because the controlled variables are not observable in the velocity formulation.
However, if the controlled variables are a linear combination of the measured
outputs, the velocity form can still be applied.

4. The initialization of the state vector x̃0, in terms of estimate ˆ̃x and covariance
matrix P0, is not obvious.

5. The choice of the noise model, in terms of G̃ and Qw̃, is not obvious.

6. Since the state is augmented with the output, the MPC optimization problem
may be more expensive to solve. This problem is common to any formulation
that requires augmentation (for instance, the standard formulation requires aug-
mentation if ∆u penalties or constraints need to be considered).

7. The control law cannot include an input penalty term, i.e. (uk−us)T R(uk−us)
because the target for the input, i.e. us cannot be specified in the velocity
algorithm. Moreover, if we wanted to include this term in the LQR objective
function (see eqn. 4) we would have to add uk−1 as additional state, but the
obtained augmented state-space ([∆xT

k , zT
k , uT

k−1]
T and related matrices Ã and

B̃) would not be stabilizable.

References

[1] C. R. Cutler and B. L. Ramaker. Dynamic matrix control – a computer algorithm. In
AIChE 86th National Meeting, Houston, TX, 1979.

[2] C. E. Garcia and A. M. Morshedi. Quadratic programming solution of dynamic matrix
control (QDMC). Chem. Eng. Commun., 46:73–87, 1986.



TWMCC Technical Report 2001-01 21

[3] D. E. Kassmann, T. A. Badgwell, and R. B. Hawkins. Robust steady-state target
calculation for model predictive control. AIChE J., 46:1007–1024, 2000.

[4] J. H. Lee, M. S. Gelormino, and M. Morari. Model predictive control of multi-rate
sampled-data systems: a state-space approach. Int. J. Control, 55:153–191, 1992.

[5] B. A. Ogunnaike and W. H. Ray. Process Dynamics, Modeling, and Control. Oxford
University Press, 1994.

[6] G. H. C. Oliveira, W. C. Amaral, G. Favier, and G. A. Dumont. Constrained robust
predictive controller for uncertain processes modeled by orthonormal series functions.
Automatica, 36:563–571, 2000.

[7] J. Richalet, J. Rault, J. L. Testud, and J. Papon. Model predictive heuristic control:
Applications to industrial processes. Automatica, 14:413–1554, 1978.

[8] E. D. Sontag. Mathematical Control Theory. Springer, second edition, 1998.


