On the equivalence between statements with ϵ-δ and K-functions

James B. Rawlings* and Michael J. Risbeck†
Department of Chemical and Biological Engineering
University of Wisconsin-Madison
December 1, 2015

1 Introduction and Motivating Examples

The purpose of this note is to establish some simple results enabling direct translation between classic ϵ-δ statements and K-function statements. The definition of K-function is standard.

Definition 1 (K-function). A K-function is a function defined on a nonempty interval $[0,b]$ with $b > 0$, $\gamma : [0,b] \rightarrow \mathbb{R}_{\geq 0}$ that is continuous, strictly increasing, and zero at zero.

Note that we require $\gamma(\cdot)$ to be defined only on some nonzero interval, not $[0,\infty)$.

As a motivating example, consider the standard ϵ-δ definition of continuity of a function $f(\cdot)$ at a point x.

Definition 2 (Continuity: ϵ-δ). A function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is continuous at x if for every $\epsilon > 0$, there exists $\delta(\epsilon) > 0$ (note that $\delta(\epsilon)$ may depend on x) such that

$$|f(x + p) - f(x)| \leq \epsilon \quad \text{for all } |p| \leq \delta(\epsilon) \quad (1)$$

The equivalent definition of continuity in the language of K-functions is the following.

Definition 3 (Continuity: K-function). A function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is continuous at x if there exists a K-function $\gamma(\cdot)$ (note that the function $\gamma(\cdot)$ may depend on x) such that

$$|f(x + p) - f(x)| \leq \gamma(|p|) \quad \text{for all } |p| \in \text{Dom}(\gamma) \quad (2)$$

* james.rawlings@wisc.edu
† risbeck@wisc.edu
To establish the equivalence of these definitions, we require the following result establishing a connection between the (possibly discontinuous) function $\delta(\epsilon)$ and existence of a K-function underbound.

Proposition 4 (A K-function underbound of $\delta(\epsilon)$). Let $\delta : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ be an increasing, i.e., nondecreasing, function. Then there exists a K-function $\alpha(\cdot)$ such that for all $\epsilon > 0$

$$\alpha(\epsilon) \leq \delta(\epsilon)$$

Proof. In this proof, we construct the K-function $\alpha(\cdot)$ from the given function $\delta(\cdot)$. Figures 1–3 shows the techniques we employ. Start by taking an arbitrary $a_0 > 0$, and create a doubly infinite sequence, a_i with $i = 0, \pm 1, \pm 2, \ldots$, such that a_i is strictly increasing and tends to infinity and a_{-i} is strictly decreasing and tends to zero as i tends to infinity. We have that the a_i sequence is strictly increasing. Now define the sequence y_i by

$$y_i = \delta(a_{i-1}) \quad i = 0, \pm 1, \pm 2, \ldots$$

Note this right shift trick, depicted in Figure 1, is useful when creating an underbounding function. Since $\delta(\cdot)$ is a positive, increasing function, we have that $y_i = \delta(a_{i-1}) > 0$ and y_i is an increasing sequence. Next define the continuous function $f(\cdot)$ by connecting the

1 Note that we can assume $\delta(\epsilon)$ is an increasing function. See Proposition 11
Figure 2: Making an \(f'(\epsilon) \) function (solid line) that is strictly increasing with \(f'(0) = 0 \) from an increasing function \(f(\epsilon) \) (dashed line).

So far we have a function \(f(\cdot) \) defined on \([0, \infty)\) that is continuous (and piecewise linear), increasing, and satisfies \(f(\cdot) < \delta(\cdot) \). But \(f(\cdot) \) may not be a \(K \)-function because \(f(0) \) may not be zero, and \(f(\cdot) \) may not be strictly increasing. We next create a function with these properties. See also Figure 2.

If the function \(f(\cdot) \) is a constant function with value \(y_0 > 0 \), define \(\alpha(\epsilon) \) as any strictly increasing function starting at zero that underbounds \(y_0 \). For example

\[
\alpha(\epsilon) = y_0(1 - e^{-\epsilon})
\]

If \(f(\cdot) \) is not constant, take any index \(i_0 \) such that \(y_{i_0} < y_{i_0+1} \). For simplicity, relabel the \(a_i, y_i \) sequences such that \(i_0 = 0 \). Starting at \(i = 1 \), find the first set of indices (if any) \(i \in [i_1, i_2] \) where \(y_i \) is constant and \(y_{i_2} < y_{i_2+1} \). On such intervals define \(f'(\epsilon) \) to be the linear function

\[
f'(\epsilon) = \left(\frac{a_{i_2} - \epsilon}{a_{i_2} - a_{i_1}} \right) y_{i_1} + \left(\frac{\epsilon - a_{i_1}}{a_{i_2} - a_{i_1}} \right) y_{i_2}, \quad \epsilon \in [a_{i_1}, a_{i_2}]
\]

Note that \(f'(\cdot) \) is continuous, strictly increasing, and underbounds \(f(\cdot) \) on the interval \([a_{i_1}, a_{i_2}]\). Continue to the next interval of indices over which \(y_i \) is constant and repeat.

\[\text{We define } f(0) \text{ as } \lim_{\epsilon \searrow 0} f(\epsilon), \text{ which exists because } f(\cdot) \text{ is monotone.}\]
Figure 3: Treating the (usual) case when \(f(\epsilon) \) converges to zero as \(\epsilon \) converges to zero.

While increasing \(i \), if \(y_i \) becomes constant on an interval \([i_3, \infty)\) with \(y_{i_3-1} < y_{i_3} \), then create the underbound

\[
f'(\epsilon) = (y_{i_3} - y_{i_3-1})(1 - e^{-\epsilon_{i_3-1}}), \quad \epsilon \geq a_{i_3-1}
\]

In this fashion we have constructed an \(f'(\cdot) \) that is strictly increasing on \([a_0, \infty)\) and is an underbound of \(\delta(\cdot) \) on this interval.

Next we turn attention to the interval \([0, a_0]\). If \(f(\epsilon) \) converges to some \(b > 0 \) as \(\epsilon \to 0 \), then define \(f'(\epsilon) \) on \([0, a_1]\) as the linear function connecting the point \((0, 0)\) to \((a_0, b)\) and then join the function \(f'(\epsilon) \) for \(\epsilon \geq a_1 \) as shown in Figure 2.\(^3\) Setting \(\alpha(\cdot) = f'(\cdot) \), we then have a \(K \)-function underbound on \([0, \infty)\) for this case.

Finally, if \(f(\epsilon) \) converges to zero as \(\epsilon \to 0 \) (the usual case), proceed as in the previous part and replace intervals of constant values by their linear underbounds as shown in Figure 3.\(^4\) In this case also, setting \(\alpha(\cdot) = f'(\cdot) \), we have constructed a \(K \)-function underbound on \([0, \infty)\) and the proof is complete.

Note that the \(K \)-function \(\alpha(\cdot) \) is defined on \([0, \infty)\) and the \(K \)-function \(\alpha^{-1}(\cdot) \) is defined on \([0, \delta]\) in which \(\delta > 0 \) is any value satisfying \(\delta < \sup_{\epsilon>0} \delta(\epsilon) \).

Proposition 5 (Equivalence of two continuity definitions). *The classic \(\epsilon-\delta \) definition and \(K \)-function definition of continuity are equivalent.*

Proof.

\(^3\)Note that we have now redefined \(f'(\epsilon) \) on the interval \([a_0, a_1]\).

\(^4\)Note that in this last case, unlike when treating the increasing \(a_i \) values, there is no interval \([0, a_{i_4}]\) on which \(f(\epsilon) \) can be constant because \(f(0) = 0 \) but \(f(a_{i_4}) > 0 \) for all \(i_4 \).
K definition implies ε-δ definition. Given the K-function $\gamma(\cdot)$ satisfying (2) choose $\delta(\epsilon) := \gamma^{-1}(\epsilon)$. We then have $|p| \leq \delta(\epsilon) = \gamma^{-1}(\epsilon)$ implies that $|f(x + p) - f(x)| \leq \gamma(|p|) \leq \gamma(\gamma^{-1}(\epsilon)) = \epsilon$ and the ε-δ definition of continuity is established.

ε-δ definition implies K definition. Since $\alpha(\cdot)$ defined in Proposition 4 is defined on $[0, \infty)$, for any $\epsilon > 0$ choose p so that $|p| = \alpha(\epsilon)$. Since $|p| = \alpha(\epsilon) \leq \delta(\epsilon)$, by ε-δ continuity, we have that $|f(x + p) - f(x)| \leq \epsilon = \alpha^{-1}(|p|)$. Note that $\alpha^{-1}(\cdot)$ is a K-function defined on $[0, \delta]$ and the K-function definition of continuity is established.

As a second example, consider the definition of Lyapunov stability.

Definition 6 (Lyapunov stability: ε-δ). Consider the dynamic system $x^+ = f(x)$ with $f(0) = 0$. The origin is Lyapunov stable if for every $\epsilon > 0$ the exists $\delta(\epsilon) > 0$ such that for $|x| \leq \delta$, the solution satisfies for all $k \geq 0$

$$|\phi(k; x)| \leq \epsilon$$

The equivalent definition with a K-function is the following.

Definition 7 (Lyapunov stability: K-function). Consider the dynamic system $x^+ = f(x)$ satisfying $f(0) = 0$. The origin is Lyapunov stable if there exists a K-function $\gamma(\cdot)$ such that for all $k \geq 0$

$$|\phi(k; x)| \leq \gamma(|x|)$$

As a third example, consider the definition of robust global asymptotic stability in ε-δ language.

Definition 8 (Robust global asymptotic stability: ε-δ). Consider a globally asymptotically stable nominal system $x^+ = f(x)$. The perturbed system $x^+ = f(x) + w$ is robustly globally asymptotically stable if there exists a KL-function $\beta(\cdot)$ and for every $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that for all $\|w\| \leq \delta, x \in \mathbb{R}^n$, and $k \geq 0$

$$|x(k; x, w)| \leq \beta(|x|, k) + \epsilon$$

The equivalent K-function definition is the following.

Definition 9 (Robust global asymptotic stability: K-function). Consider a globally asymptotically stable nominal system $x^+ = f(x)$. The perturbed system $x^+ = f(x) + w$ is robustly globally asymptotically stable if there exists a K-function $\gamma(\cdot)$ and KL-function $\beta(\cdot)$ such that for all $x \in \mathbb{R}^n$ and $k \geq 0$

$$|x(k; x, w)| \leq \beta(|x|, k) + \gamma(\|w\|)$$

Note that we could write the final inequality equivalently as

$$|x(k; x, w)| \leq \beta(|x|, k) + \gamma(\|w\|_{0:k-1})$$

because $x(k; x, w)$ depends on w only up to time $k - 1$. The last statement is equivalent to the statement that $x^+ = f(x) + w$ is input-to-state stable (ISS) considering the disturbance w as the input.
2 Generalization

The following definitions and theorem generalize the previous examples. Let X be any normed space.

Definition 10 (Property P). A system with testable condition $C : X \to \mathbb{R}_{\geq 0}$ satisfying $C(0) = 0$ has property P if for every $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that

$$C(x) \leq \epsilon \quad \text{for every } x \in X \text{ satisfying } |x| \leq \delta(\epsilon)$$

We note that the function $\delta(\epsilon)$ in Definition 10 can be made increasing, as shown in the following proposition.

Proposition 11 ($\delta(\epsilon)$ can be made increasing). Suppose a system has property P as in Definition 10. Then, without loss of generality, the function $\delta(\epsilon)$ can be assumed to be a nondecreasing function.

Proof. Suppose (10) holds for $\hat{\delta}(\epsilon)$ which is possibly not nondecreasing. Next, define $\delta(\epsilon) := \min(\hat{\delta}(\epsilon), 1)$. We note that (10) holds also for $\delta(\epsilon)$ because $(0, \delta(\epsilon)) \subseteq (0, \hat{\delta}(\epsilon))$, and thus (10) holding for δ is weaker than for $\hat{\delta}$. Then, define

$$\delta(\epsilon) := \frac{1}{2} \sup_{s \in (0, \epsilon]} \delta(s)$$

which is well-defined because $\delta(s) \in (0, 1)$ for all $s > 0$, and all bounded sets of real numbers have suprema. Furthermore, $\delta(\epsilon)$ is clearly nondecreasing. To show that (10) holds for $\delta(\epsilon)$, let $\epsilon_1 > 0$ be arbitrary. By definition, there exists positive $\epsilon_0 < \epsilon_1$ such that $\bar{\delta}(\epsilon_0) \geq \delta(\epsilon_1)$.

Thus, from (10) and these two inequalities, we know that for arbitrary $x \in X$,

$$|x| \leq \delta(\epsilon_1) \implies |x| \leq \delta(\epsilon_0) \implies C(x) \leq \epsilon_0 \implies C(x) \leq \epsilon_1$$

which means (10) holds for $\delta(\epsilon)$ and the statement is proved. ■

In the language of K-functions, we have the following definition of property P_K.

Definition 12 (Property P_K). A system with testable condition $C : X \to \mathbb{R}_{\geq 0}$ satisfying $C(0) = 0$ has property P_K if there exists $b > 0$ and K-function $\gamma(\cdot)$ defined on $[0, b]$, such that for all $x \in X$ satisfying $|x| \leq b$

$$C(x) \leq \gamma(|x|)$$

Proposition 13 (Equivalence of P and P_K). A system has property P if and only if it has property P_K. The constant b defined in property P_K can be chosen as any positive value satisfying $b < \sup_{\epsilon > 0} \delta(\epsilon)$ with $\delta(\epsilon)$ defined in property P.

5Suppose not. Then, for all $s \in (0, \epsilon]$, we have $\bar{\delta}(s) < \delta(s) < \sup_{s \in (0, \epsilon]} \delta(s)$, which is a contradiction because we have found an upper bound strictly less than the supremum.
3 Extensions

Here we show how a global K-function can be found for a locally bounded function.

Proposition 14 (Global K-function overbound.) Let $X \subseteq \mathbb{R}^n$ be closed and suppose that a function $V : X \to \mathbb{R}_{\geq 0}$ is continuous at $x_0 \in X$ and locally bounded on X (i.e., bounded on every compact subset of X). Then, there exists a K-function α such that

$$|V(x) - V(x_0)| \leq \alpha(|x - x_0|) \text{ for all } x \in X$$

Proof. First, by Proposition 5, we know that there exists a local overbounding function, i.e., there exists a K-function γ and a constant $a > 0$ such that

$$|V(x) - V(x_0)| \leq \gamma(|x - x_0|) \text{ whenever } |x - x_0| \leq b_0$$

Note that any $b_0 \in \text{Dom}(\gamma)$ will suffice.

From here, we proceed similarly to Proposition 11 in Rawlings and Mayne (2011). Starting from b_0, choose any strictly increasing sequence $\{b_i\}$. For each $i \in \mathbb{I}_{\geq 1}$, let $B_i = \{x \in X : |x - x_0| \leq b_i\}$. We note that each B_i is a compact subset of X. Next, define a sequence $\{\beta_i\}$ as

$$\beta_i := \sup_{x \in B_i} |V(x) - V(x_0)| + i$$

which is well-defined by compactness of the B_i. We note also that the β_i are strictly increasing. Finally, define

$$\alpha(s) := \begin{cases} \frac{\beta_1}{\gamma(b_0)} \gamma(s) & s \in [0, b_0) \\ \beta_i + (\beta_{i+2} - \beta_i) \frac{s - b_i}{b_{i+1} - b_i} & s \in [b_i, b_{i+1}) \text{ for all } i \in \mathbb{I}_{\geq 0} \end{cases}$$

We illustrate this construction in Figure 4. Clearly, $\alpha(0) = 0$ and α is continuous and increasing. Furthermore, because we have shifted the β_i as before, we see that $|V(x) - V(x_0)| \leq \alpha(|x - x_0|)$.

We note that for the case of $V(x) \geq 0$ and $x_0 = 0$, we have

$$V(x) \leq \alpha(|x|) \text{ for all } x \in X$$

and thus, α gives a global overbound.

References

Figure 4: Construction of α. The function $\alpha(s)$ is constructed by rescaling $\gamma(s)$ on $[0, b_0]$ (green) and then linearly interpolating (red) the points (b_i, β_{i+1}) (blue).