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Abstract

This paper proposes an efficient computational procedure for the
continuous time, input constrained, infinite horizon, linear quadratic
regulator problem (CLQR). To ensure satisfaction of the constraints,
the input is approximated as a piecewise linear function on a finite time
discretization. The solution of this approximate problem is a standard
quadratic program. A novel lower bound on the infinite dimensional
CLQR problem is developed, and the discretization is refined until a
user supplied error tolerance on the CLQR cost is achieved.

The offline storage of the matrices required for the solution of the
model and adjoint equations, integration of the cost function, and
computation of the cost gradient at several levels of discretization
tailor the method for online use as required in model predictive control
(MPC). The performance of the proposed algorithm is then compared
with the standard discrete time algorithms used in most industrial
model predictive control implementations. The proposed method is
shown on two examples to be significantly more efficient than standard
discrete time MPC that uses a sample time short enough to generate
a cost close to the CLQR solution.

1 INTRODUCTION

In this paper we are concerned with the infinite horizon, continuous time optimal control
problem for a linear system subject to input bounds. For brevity, we refer to this as the
CLQR (constrained linear quadratic regulator) problem. It is perhaps the simplest op-
timal control problem of significant interest after the classical, unconstrained LQR. One
of the compelling features of both LQR and CLQR is the guarantee of nominal, closed-
loop stability that they provide for unconstrained and input constrained linear systems,
respectively. Model predictive control, which is based on implementing solutions to optimal
control problems as state measurements (or state estimates) become available, is arguably
the most important advanced industrial control design method in use today. Although
theoretical research on nonlinear MPC has reached at least a respectable level of com-
pleteness, almost all industrial applications remain based on linear models. Research on
linear MPC therefore remains useful and important. Besides linearity, however, another
feature of almost all industrial MPC methods is the use of discrete time models. It is this
use of discrete time that we would like to examine in this paper. Is it necessary? Is it
convenient? Is it as good as, or even better than, continuous time? For what reasons and
in what ways? To provide a sound basis for comparison, we first develop and present a new
algorithm for solving the CLQR problem. The problem is doubly infinite dimensional, first
because the input is a continuous time function, and second because the cost function is
defined on an infinite horizon. We show that neither feature causes insurmountable compu-
tational difficulties, and we can solve this problem reasonably efficiently with a guarantee
of proximity to optimality.
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The paper is organized as follows. In Section 2, we develop the basic numerical dis-
cretization of the continuous time problem using a piecewise linear input parameterization.
In Section 3, we present quadrature formulas, based on matrix exponentiation, that can be
computed and stored offline for fast, repetitive online calculation, as is required in MPC.
These formulas allow us to efficiently solve the model and adjoint differential equations,
evaluate the cost function, and its gradient with respect to the input. Because the original
CLQR problem is (strictly) convex, we are able to develop a novel lower bound on the opti-
mal cost; this is presented in Section 4. This lower bound enables a stopping criterion that
meets a user specified proximity to optimality. In Section 5, we propose an algorithm for
refining the discretization to solve the CLQR problem and discuss stopping criteria. Next
in Section 6, we show that this algorithm converges. In Section 7, we provide numerical ex-
amples that show the algorithm can be solved quickly, and we briefly explore how it scales
with state dimension. Notice that the usual discrete time issue of scaling with respect to
horizon length is rendered moot because of the infinite horizon. Finally in Section 8 we
draw conclusions of the study. At the end of the conclusions, we enumerate a number of
issues that should be examined, or perhaps reexamined, in light of these new results when
choosing between discrete time and continuous time in formulating MPC algorithms for
industrial applications with linear models.

An earlier, condensed version of this paper was presented at the 2013 European Con-
trol Conference [19]. Some of the changes in this paper include the following: (i) improved
second order, instead of first order, lower bounding functions, (ii) a revised and improved
adaptive interval partitioning scheme, (iii) a convergence proof that does not require bi-
secting the largest interval, (iv), closed-loop simulations and comparison with discrete time
MPC algorithms, and (v) larger scale examples.

Notation The symbols R and Z denote the fields of reals and integers, respectively.
Given two reals (integers) a, b with a < b, Ra:b (Za:b) denotes all reals (integers) x such
that a ≤ x ≤ b. The symbol ′ is the transpose operator. All vector inequalities are
meant component wise. Given two vectors x, y ∈ Rn, (x, y) , [ xy ] denotes the composite
vector, 〈x, y〉 denotes the inner product, |x| ,

√
〈x, x〉 denotes the Euclidean norm, and

|x|2Q , 〈x,Qx〉. Given a matrix A and positive integers a, b, c, d, the symbol Aa:b,c:d denotes
the submatrix with rows a to b and columns c to d, and Aa:b,: denotes the submatrix of
rows a to b and all columns. Im is the identity matrix of dimension m×m (the dimension
is omitted if not necessary). Given two symmetric matrices A,B of the same dimensions,
the relation A > B (A ≥ B) means that A−B is positive definite (positive semi-definite);
λmin(A) is the smallest eigenvalue of A. Given a set S, int(S) denotes its interior.
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2 PRELIMINARIES

2.1 Continuous time optimal control problem

In this paper we address the computation of the optimal solution to the continuous time,
infinite horizon, input constrained, linear quadratic regulation problem:

P∞(x) : inf
u(·)

{
V∞(x, u(·)) ,

∫ ∞
0

`(x(t), u(t))dt

}
, s.t. x(0) = x, (1a)

ẋ = f(x, u) , Ax+Bu, for all t ∈ [0,∞), and (1b)

u(·) ∈ U∞, (1c)

in which U∞ is the class of measurable controls defined on [0,∞) and taking values in
U =

∏m
i=1 Ui, where Ui , [umin

i , umax
i ], 0 ∈ int(U), which is a compact, convex subset of

Rm. The state x ∈ Rn, and the function `(·) is quadratic: `(x, u) , 1
2(x′Qx+ u′Ru).

Assumption 1. The pair (A,B) is stabilizable and (Q1/2, A) is observable. Q ≥ 0 and
R > 0.

Remark 2. Observability of (Q1/2, A) can be relaxed to detectability. To clarify this point,
assume without loss of generality that matrices (A,B,C), with C = Q1/2 are in observability
canonical form, i.e., the system of problem P∞(x) evolves as:[

ẋ1

ẋ2

]
=

[
A11 0
A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u, y =

[
C1 0

] [x1

x2

]
, (2)

in which (A11, C1) is observable, A22 is Hurwitz, and x2 is the unobservable mode. In fact,
the evolution of x1 does not depend on x2 and the cost function can be expressed as:

`(x, u) = 1
2(y′y + u′Ru) = 1

2(x′1C
′
1C1x1 + u′Ru),

which shows that the cost function is not affected by substate x2. Therefore, it can be
removed from (2), reducing the system matrices to (A11, B1) and Q = C ′1C1 with (Q1/2, A11)
observable, without altering problem P∞(x). All the results in the paper, such as closed-loop
stability, then apply to the (x1, u) system. But since x2 satisfies

ẋ2 = A22x2 +
[
A21 B2

] [x1

u

]
and A22 is Hurwitz, stability of the (x1, u) system implies x2 converges to zero and, there-
fore, stability of the (x, u) system as well.

We define X∞ as the set of initial states x for which there exists u(·) ∈ U∞ such that
V∞(x, u(·)) is finite. Thus V∞ : X∞ × U∞ → R≥0. Existence and uniqueness of a solution
to P∞(x) for each x ∈ X∞ is established after (6).
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In order to rewrite the infinite horizon problem P(x) as an equivalent finite horizon
problem, we define a suitable ellipsoid invariant set as follows. Let P be the unique sym-
metric positive definite solution to the (continuous time) algebraic Riccati equation (which
exists under Assumption 1):

0 = Q+A′P + PA− PBR−1B′P. (3)

Given a positive scalar α, we consider the following set:

Xf , {x ∈ Rn | x′Px ≤ α}. (4)

Clearly, Xf is an invariant (ellipsoidal) set for the unconstrained closed-loop system:

ẋ = Ax+Bu, u = Kx,

with K = −R−1B′P . Because U contains the origin in its interior, if α is sufficiently small,
then for any x ∈ Xf there holds Kx ∈ U. Hence, u(t) = Kx(t) remains feasible at all
times with respect to the constraint (1c) once x(t) has entered Xf . Let U be rewritten as
{u ∈ Rm | Du ≤ d}. The largest admissible value of α can be found as follows.

Algorithm 3 (Invariant set). Require: P , K, D, d.
1: Perform eigenvalue decomposition of P , i.e. P = SΛS′.

2: Define M , DKSΛ−
1
2 .

3: Evaluate radius of largest sphere, y′y ≤ r2, s.t. My ≤ d.
4: return α , r2.

Given T > 0, we replace P(x) by the following finite horizon optimal control problem:

PT (x) : min
u(·)

{
VT (x, u(·)) ,

∫ T

0
`(x(t), u(t))dt+ Vf (x(T ))

}
, (5a)

subject to x(0) = x and

model (1b) and constraint (1c) for all t ∈ [0, T ], (5b)

Vf (x) , 1
2x
′Px with P > 0 computed from (3), UT is the class of measurable controls

defined on [0, T ] and taking values in the compact, convex set U. Thus, VT : Rn×UT → R≥0.
PT (x) has a unique solution for any x ∈ Rn [16, Thm. 14, Chapter 3]. Let u0

T (·) be the
(finite time) input trajectory solution to PT (x) and x0

T (·) the associated (finite time) state
trajectory.

Proposition 4. For each x ∈ X∞, there exists T̄ ∈ R>0 such that x0
T (T ) ∈ Xf ∀T ≥ T̄ ,

and limT→∞ x
0
T (T ) = 0.

Proof: We prove the result in three parts.
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(i) There exists finite T̄ such that x0
T̄

(T̄ ) ∈ Xf . Since (A,Q1/2) is observable, there
exists an L such that (A − LC) is Hurwitz and the linear system ẋ = Ax + Bu can be
rewritten as

ẋ = (A− LC)x+
[
B L

] [u
y

]
with y = Q1/2x. Observability of (A,Q1/2) also implies that Xf is compact, contains the
origin in its interior, and there exists a > 0 such that x not in Xf implies |x| ≥ a.

Since Xf is forward invariant for ẋ = (A + BK)x, if x0
T (T ) is not in Xf , then neither

is x0
T (t) for all t ∈ [0, T ]. So we assume contrary to what we wish to prove that there is

no finite T such that x0
T (t) ∈ Xf for t ∈ [0, T ]. Lemma 15 (reported in Appendix) then

applies and we know that
∥∥(u0

T (·), y0
T (·))

∥∥
2
→∞ as T →∞. But this contradicts the fact

that
∫ T

0 `(x0
T (t), u0

T (t))dt =
∫ T

0 (
∣∣y0
T (t)

∣∣2 +
∣∣u0
T (t)

∣∣2
R

)dt is uniformly bounded for all T , and
the result is established.

(ii). Given T̄ with x0
T̄

(T̄ ) ∈ Xf , then x0
T (T ) ∈ Xf for every T ≥ T̄ . From optimality

and the fact that Xf is forward invariant for the unconstrained optimal control problem
ẋ = (A+BK)x, we have that x0

T (T̄ ) = x0
T̄

(T̄ ;x) for T ≥ T̄ and the result follows.
(iii). Convergence: x0

T (T ) → 0 as T → ∞. Let T > T̄ . From (i) we know that
x0
T̄

(T̄ ) ∈ Xf and from (ii) that x0
T (T ) ∈ Xf . From optimality of the unconstrained control

law, the evolution after T̄ is given by x0
T (T ) = e(A+BK)(T−T̄ )xT̄ (T̄ ). Since (A + BK) is

Hurwitz, x0
T (T )→ 0 as T →∞.

For x ∈ X∞, if T ∈ R≥0 is large enough that x0
T (T ) ∈ Xf , since Vf (x) is the optimal

infinite horizon cost for any x ∈ Xf , by the principle of optimality it follows that the
(infinite time) input and state trajectories defined as:

(
u0
∞(·), x0

∞(·)
)
,

{(
u0
T (t), x0

T (t)
)

if t ∈ [0, T ],(
Ke(A+BK)(t−T )x0

T (T ), e(A+BK)(t−T )x0
T (T )

)
if t > T,

(6)

are, respectively, the minimizer of P∞(x) and its associated state trajectory. Thus, P∞(x)
and PT (x) yield the same solution, i.e. V 0

T (x) , VT (x, u0
T (·)) = V 0

∞(x) , V∞(x, u0
∞). From

the above discussion it follows that P∞(x) has a unique solution for all x ∈ X∞. In discrete
time, earlier but less general results on existence and uniqueness of solutions to P∞ are
available. For example, [7] treats only the case Q > 0, whose proof is only a few lines (see
Assumption H1 of their paper). The authors of [27, 28] treat the general case, (A,Q1/2)
detectable, but do not include a proof of existence and uniqueness of the infinite horizon
problem (see remark 4 in [28]).

There is a rich literature on solution methods for finite horizon nonlinear constrained
optimal control. In most approaches a piecewise constant input parameterization is consid-
ered and numerical discretization is deployed to derive and solve (approximate) optimality
conditions (see e.g. [12, 5, 2, 3, 26, 13] and references therein). On the other hand, methods
specifically tailored to constrained linear systems are less common, but some interesting
results and methods can be found in [6, 14, 24, 10, 17, 25, 1, 8]. We remark that one distin-
guishing feature of our method is that computes a solution to PT (x) that is accurate to a
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user defined tolerance. Furthermore, our method is based on the solution of strictly convex
Quadratic Programming problems, for which reliable (off-the-shelf or tailored) algorithms
exist, and has no specific restriction on the system (state and input) dimensions.

Remark 5. We are assuming that the controlled system evolves as in (1b), i.e. the actuator
hardware, if digital, is able to implement the continuous time input solution to P∞(x)
without introducing noticeable discretization effects.

2.2 Input parameterizations

For all T ∈ R>0, let γ be a partition of the interval [0, T ], defined as a sequence of Jγ ∈ Z>0

intervals {Ij , [tj , tj+1] | j ∈ Z0:Jγ−1} such that 0 = t0 < t1 < · · · < tJγ = T . Let

∆j , tj+1 − tj denote the length of Ij ; we assume that each ∆j satisfies ∆j = 2qjδ with
qj ∈ Z≥0 and δ > 0, in which case we say that γ ∈ ΓTδ . In order to consider a finite
parameterization of the function u : [0, T ] → Rm, it is customary in sampled data control
of continuous time systems (see, e.g. [31]) to assume that the input is constant in each
interval Ij , i.e.,

u(t) = uj for all t ∈ Ij . (7)

Formally, given a partition γ of [0, T ], we define Uγ,ZOH
T as the set of all functions u(·) = UT

satisfying the zero-order hold (ZOH) parameterization (7) in which uj ∈ U for all j ∈
Z0:Jγ−1. Since u(·) is piecewise constant it is measurable. Besides the fact that restricting

u(·) to the set Uγ,ZOH
T makes PT (x) finite dimensional, it also ensures that u(t) ∈ U for all

t ∈ [0, T ]. In [18] we argued that a better choice is to assume the input piecewise linear in
each interval:

u(t) = (1− ηj(t))uj + ηj(t)vj , for all t ∈ Ij , with ηj(t) ,
t− tj
∆j

. (8)

Formally, given a partition γ of [0, T ], we define Uγ,PWLH
T as the set of all functions u(·) ∈ UT

satisfying the piecewise linear hold (PWLH) parameterization (8) in which (uj , vj) ∈ U2 for
all j ∈ Z0:Jγ−1. Notice that for all j ∈ Z0:Jγ−1, we have that ηj(tj) = 0 and ηj(tj+1) = 1.
Thus, if (uj , vj) ∈ U2, then u(t) ∈ U for all t ∈ Ij , all j ∈ Z0:Jγ−1.

A variant to PWLH (8), also discussed in [18] and called forward first order hold
(FFOH), enforces continuity of u(·) for all t ∈ [0, T ] by adding to (8) the restriction:

vj = uj+1 for all j ∈ Z0:Jγ−2. (9)

For the sake of brevity, this variant is not discussed in this paper.

2.3 Discretized optimal control problem

Given a discretization γ and choosing either ZOH or PWLH, i.e. defining Uγ , UγZOH

or Uγ , UγPWLH, we can obtain a suboptimal solution to PT (x) by solving the following
discretized optimal control problem:

PγT (x) : min
u(·)∈Uγ

VT (x, u(·)) subject to x(0) = x and model (1b) . (10)
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As discussed in the next section, we rewrite PγT (x) as an equivalent discrete time CLQR
problem and solve it via Quadratic Programming (QP). Then, under certain conditions we
accept the achieved solution or we refine the discretization γ.

In most existing approaches to solve CLQR (and general nonlinear optimal control)
problems, the time discretization is uniform, but a number of methods exist which take
advantage of (offline predetermined) non-uniform discretization schemes [18, 17, 23]. Such
schemes can be equivalently interpreted as move blocking constraints in conventional dis-
crete time MPC formulations [11].

3 ODE SOLVER FREE DISCRETIZATION

3.1 LQR discretization for ZOH via matrix exponential

Given an interval Ij , assuming to use the ZOH parameterization (7), it is well known [15,31]
that we can compute an equivalent discrete time system evolution as:

xj+1 = Ajxj +Bjuj , (11)

in which xj , x(tj) and:

Aj = eA∆j , Bj =

∫ ∆j

0
eAsBds. (12)

Moreover, there holds:

VT (x, u(·)) =

Jγ−1∑
j=0

`j(xj , uj) + Vf (x(T )), (13)

where

`j(xj , uj) ,
∫ tj+1

tj

`(x, u)dt = 1
2(x′jQjxj + u′jRjuj + 2x′jMjuj), (14)

in which [
Qj Mj

M ′j Rj

]
=

∫ ∆j

0
e

[
A B
0 0

]′
s [Q 0

0 R

]
e

[
A B
0 0

]
s
ds. (15)

The above formulas allow one to compute all matrices (Aj , Bj , Qj , Rj ,Mj) by solving
a system of ordinary differential equations (ODE). However, Van Loan [29] showed that
all of these matrices can be found by means of a single matrix exponentiation as follows.
First, define a block upper triangular matrix C and partition its exponential as follow:

C ,

[
−A′ I 0 0

−A′ Q 0
A B

0

]
, eCτ ,

 F1(τ) G1(τ) H1(τ) K1(τ)
F2(τ) G2(τ) H2(τ)

F3(τ) G3(τ)
F4(t)

 . (16)

Then, obtain:

Aj = F3(∆j), Bj = G3(∆j), Qj = F ′3(∆j)G2(∆j), Mj = F ′3(∆j)H2(∆j),

Rj = R∆j +
[
B′F ′3(∆j)K1(∆j)

]
+
[
B′F ′3(∆j)K1(∆j)

]′
. (17)
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3.2 LQR discretization for PWLH via matrix exponential

Numerical experience shows that computation of (Aj , Bj , Qj , Rj ,Mj) for ZOH via matrix
exponential formulas (16)–(17) is faster and (typically) more accurate than via an ODE
solver. We show here how a similar procedure can be implemented for PWLH. To this aim,
in each interval Ij , we can consider an augmented system with state z , (z(1), z(2)) ∈ R2n,
in which z(1)(t) , x(t) and z(2)(t) , u(t) − uj = ηj(t)(vj − uj), and constant input
wj = (uj , vj) ∈ R2m. This augmented system evolves in Ij as:

ż =
[
A B
0 0

]
z +

[
B 0

− Im
∆j

Im
∆j

]
wj . (18)

If we set A∗ ,
[
A B
0 0

]
, B∗ ,

[
B 0

− Im
∆j

Im
∆j

]
, Q∗ ,

[
Q 0
0 0

]
and we define C and its partitioned

exponential as in (16) with (A,B,Q) replaced by (A∗, B∗, Q∗), under PWLH (8) we obtain:

zj+1 = A∗jzj +B∗jwj , `∗j (zj , wj) ,
∫ tj+1

tj

`(x, u)dt = 1
2(z′jQ

∗
jzj + w′jRjwj + 2z′jM

∗
j wj),

(19)
where

A∗j = F3(∆j), B∗j = G3(∆j), Q∗j = F ′3(∆j)G2(∆j), M∗j = F ′3(∆j)H2(∆j),

Rj = (1/6)
[

2R R
R 2R

]
∆j +

[
B′F ′3(∆j)K1(∆j)

]
+
[
B′F ′3(∆j)K1(∆j)

]′
. (20)

Finally, by noticing that z(2)(tj) = 0, in the discrete time evolution and cost function we
can remove the component z(2) to obtain:

xj+1 = Ajxj +Bjwj , (21)

VT (x, u(·)) =

Jγ−1∑
j=0

`j(xj , wj) + Vf (x(T )), (22)

where Aj = A∗j 1:n,1:n
, Bj = B∗j 1:n,:

and

`j(xj , wj) = 1
2(x′jQjxj + w′jRjwj + 2x′jMjwj), (23)

in which , Qj = Q∗j 1:n,1:n
, Mj = Q∗j 1:n,:

, and Rj is defined in (20).

We observe that in (21) the discrete time evolution of the system under PWLH is still
described by a linear system with the original state xj and an augmented input wj =
(uj , vj).

For the sake of brevity, from now on we focus solely on PWLH, but all derivations and
results will apply directly to ZOH, which can be seen as a PWLH in which wj = (uj , uj).

Given the above premises, problem PγT (x) can be rewritten as a conventional discrete
time CLQR problem. Let u , (w0, w1, . . . , wJγ−1) be an augmented input sequence of
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V̄ 0

V̂ 0
V 0

V (u)

ū0 û0 u0 u

U

V

ν

V̄ (ν) = V (u) + (d/du)V (u)(ν − u)

V̂ (ν) = V (u) + (d/du)V (u)(ν − u) + α(ν − u)2, with α < 1
2H

V
V̂
V̄

Figure 1: Illustrating the main idea of computing lower bounds on the optimal cost of the
scalar function V (ν) = V (u) + (d/du)V (u)(ν−u) + 1

2H(ν−u)2 in U, given a feasible point

u. V̂ (·) is the approximate second order lower bounding function, û0 is its minimizer and
V̂ 0 its minimum value. V̄ (·) is the first order lower bounding function, ū0 is its minimizer
and V̄ 0 its minimum value.

length Jγ . Then, the discretized problem PγT (x) can be equivalently written as:

PγT (x) : min
u∈U2Jγ

V γ
T (x,u) ,

Jγ−1∑
j=0

`j(xj , wj) + Vf (xJγ )

 ,

subject to x0 = x and model (21) . (24)

4 LOWER BOUNDS ON OPTIMAL COST OF PT (x) AND
PγT (x)

Next we show how, exploiting the convexity of both PT (x) and PγT (x), we can obtain a
lower bound of the optimal cost of each problem, given any feasible input u(·). The main
idea is graphically explained in Figure 1.

4.1 Lower bound of the continuous time optimal cost

VT : Rn × UT → R≥0 is defined by: VT (x, u(·)) ,
∫ T

0 `(xu(t;x)), u(t)dt + Vf (xu(T ;x)), in
which xu(t;x) is the solution of (1b) at time t given that the initial state is x at time
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0 and the control is u(·) ∈ UT . Similarly, the cost due to another control ν(·) ∈ UT
is VT (x, ν(·)) ,

∫ T
0 `(xν(t;x)), ν(t)dt + Vf (xν(T ;x)). Let ∆u(·) , ν(·) − u(·) and let

∆x(·) , xν( · ;x) − xu( · ;x) for all t ∈ [0, T ]. Because `(x, u) = 1
2(x′Qx + u′Ru) and

Vf (x) = 1
2x
′Px, we can write:

VT (x, ν(·))−VT (x, u(·)) =

∫ T

0
(〈∆x(t), Qxu(t;x)〉+ 〈∆u(t), Ru(t)〉)dt+ 〈∆x(T ), Pxu(T )〉

+ 1
2

∫ T

0
(〈∆x(t), Q∆x(t)〉+ 〈∆u(t), R∆u(t)〉)dt+ 1

2〈∆x(T ), P∆x(T )〉. (25)

The first order terms may be computed in the usual way [4, pp. 148-149]:∫ T

0
〈∆x(t), Qxu(t;x)〉+ 〈∆u(t), Ru(t)〉dt+ 〈∆x(T ), Pxu(T ;x)〉 =∫ T

0
〈∇uH(xu(t;x), u(t), λu(t;x)),∆u(t)〉dt,

in which the Hamiltonian H : Rn × Rm × Rn → R is defined by H(x, u, λ) , `(x, u) +
λ′(Ax+Bu), and λu(t;x) is the solution at time t of the adjoint system:

−λ̇(t) = A′λ(t) +Qxu(t;x), λ(T ) = Pxu(T ;x).

Since Q ≥ 0 and P > 0, for any R∗ ∈ R , {S | 0 ≤ R∗ ≤ R}, we have:

VT (x, ν(·))− VT (x, u(·)) ≥
∫ T

0
〈g(x, u(·))(t), (ν(t)− u(t))〉+ 1

2 |ν(t)− u(t)|2R∗dt,

for all ν(·) ∈ UT , in which g(·) is defined by: g(x, u(·))(t) , ∇uH(xu(t;x), u(t), λu(t;x)).
We now define the optimality function [21] θ : Rn × UT → R≤0 for problem PT (x) as:

θ(x, u(·)) , inf
ν(·)∈UT

∫ T

0
〈g(x, u(·))(t), ν(t)− u(t)〉+ 1

2 |ν(t)− u(t)|2R∗dt

=

∫ T

0
min
v∈U
{〈∇uH(xu(t;x), u(t), λu(t;x)), v − u(t)〉+ 1

2 |v − u(t)|2R∗}dt,
(26)

where the last equality is established in Proposition 16 in the Appendix if the function
L : [0, T ]× Rm → R in Proposition 16 is defined by

L(t, v) , 〈∇uH(xu(t;x), u(t), λu(t;x), v − u(t)〉+ 1
2 |v − u(t)|2R

Thus, for any ν(·) ∈ UT , we have: VT (x, ν(·))− VT (x, u(·)) ≥ θ(x, u(·)). Hence we have
proved:

Proposition 6. For any (x, u(·), T ) ∈ Rn × UT × R>0, the following inequality holds:

V 0
T (x) ≥ VT (x, u(·)) + θ(x, u(·)).
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4.2 Lower bound of the optimal cost for a given partition

In various stages of the algorithm described in § 5, it is useful to have a lower bound on
the optimal cost of the discretized problem PγT (x). Given an input u(·) ∈ UγT defined on
a partition γ and its associated parameterization vector u = (w0, w1, . . . , wJγ−1) ∈ U2Jγ ,
then:

VT (x, u(·)) = V γ
T (x,u) ,

Jγ−1∑
j=0

(
1
2〈xj , Qjxj〉+ 1

2〈wj , Rjwj〉+ 〈xj ,Mjwj〉
)

+ 1
2〈xJγ , PxJγ 〉.

For another ν(·) ∈ UγT , with associated parameterization vector ννν = (ν0, ν1, . . . , νJγ−1)
then:

V γ
T (x,ννν)−V γ

T (x,u) =

Jγ−1∑
j=0

(〈∆xj , Qjxj〉+ 〈∆wj , Rjwj〉+ 〈∆xj ,Mjwj〉)+〈∆xJγ , PxJγ 〉+

1
2

Jγ−1∑
j=0

(〈∆xj , Qj∆xj〉+ 〈∆wj , Rj∆wj〉+ 2〈∆xj ,Mj∆wj〉) + 1
2〈∆xJγ , P∆xJγ 〉. (27)

The first order terms may be computed in the usual way [4, pp. 43-47]:

Jγ−1∑
j=0

(〈∆xj , Qjxj〉+ 〈∆wj , Rjwj〉+ 〈∆xj ,Mjwj〉) + 〈∆xJγ , PxJγ 〉 = 〈gγ(x,u), ννν − u〉,

in which gγ(x,u) , (gγ0 (x,u), gγ1 (x,u), . . . , gγJγ−1
(x,u)) with:

gγj (x,u) , ∇wjHj(xj , wj , λj+1) = M ′jxj +Rjwj +B′jλj+1, j ∈ Z0:Jγ−1 , (28)

where Hj : Rn × R2m × Rn → R is the Hamiltonian defined by Hj(x,w, λ) , `j(x,w) +
λ′(Ajx+Bjw) and {λ0, λ1, . . . , λJγ} is the solution of the discrete time adjoint system:

λj = A′jλj+1 +M ′jwj +Qjxj , λJγ = PxJγ .

The second row of (27) consists of the second order terms. Forming the Schur comple-
ment, we note that: (〈∆xj , Qj∆xj〉+ 〈∆wj , Rj∆wj〉+ 2〈∆xj ,Mj∆wj〉) ≥ 〈∆wj , (Rj −
M ′jQ

−1
j Mj)∆wj〉. Since P > 0, it follows from (27) and (28) that, for all ν(·) and u(·) in

UγT :
V γ
T (x,ννν)− V γ

T (x,u) ≥ 〈gγ(x,u), ννν − u〉+ 1
2〈ννν − u,R∗(ννν − u)〉,

with R∗ a block diagonal matrix formed by matrices R∗j ∈ Rj , {S | 0 ≤ S ≤ Rj −
M ′jQ

−1
j Mj}, j ∈ Z0:Jγ−1. We now define the optimality function θγ : Rn × UγT → R≤0 for

PγT (x) as:

θγ(x, u(·)) , min
ννν∈U2Jγ

〈gγ(x,u), ννν − u〉+ 1
2〈ννν − u,R∗(ννν − u)〉 =

Jγ−1∑
j=0

θγj (x, u(·)), (29)

θγj (x, u(·)) , min
w∈U2

〈gγj (x,u), w − wj〉+ 1
2〈w − wj , R

∗
j (w − wj)〉. (30)

Thus, for any ννν ∈ U2Jγ , we have: V γ
T (x,ννν)−V γ

T (x,u) ≥ θγ(x, u(·)). Hence we have proved:
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Proposition 7. For any (x, u(·), T ) ∈ Rn × UγT × R>0, the following inequality holds:

V γ,0
T (x) ≥ VT (x, u(·)) + θγ(x, u(·)). (31)

Finally, let θδ(x, u(·)) denote θγ(x, u(·)) for the special uniform partition γδ ∈ ΓTδ in
which each constituent interval has length δ. Recalling that for any partition in ΓTδ , all
intervals Ij have a length that is a multiple of δ (or at most equal to δ), we will refer to γδ

as the finest partition.

5 ALGORITHM: CONCEPTUAL DESIGN AND PRAC-
TICAL IMPLEMENTATION

5.1 Conceptual algorithm

As anticipated, we solve PγT (x) repeatedly, refining γ at each iteration, until we obtain a
satisfactory solution of P∞(x). We refer to γ̃ ∈ ΓTδ as a refinement of γ ∈ ΓTδ if some
of the intervals {Ĩj} defining γ̃ are obtained by bisecting one or more intervals in the set
{Ij} that defines γ and if the remaining intervals in γ̃ are the same as the corresponding

ones in γ. If V 0
T (x) and V γ,0

T (x) are, respectively, the optimal value functions of PT (x) and

PγT (x) then, clearly V γ,0
T (x) ≥ V 0

T (x), for all x ∈ Rn, all γ ∈ ΓTδ , all permissible δ ∈ (0, T ).

Moreover, if γ̃ is a refinement of γ, it follows that V γ,0
T (x) ≥ V γ̃,0

T (x). We now state the
(conceptual) optimization algorithm to solve P∞(x).

Algorithm 8 (Conceptual algorithm). Require: δ, ε > 0, γ ∈ ΓTδ , c ∈ (0, 1), T,∆T > 0.
1: Solve PγT (x) yielding control u(·) ∈ UγT and state trajectory x(·). Compute θδ(x, u(·)).
2: Refine γ (repeatedly if necessary) until θγ(x, u(·)) ≤ cθδ(x, u(·)).
3: If θδ(x, u(·)) ≤ −ε, go to Step 1. Else, go to Step 4.
4: If x(T ) 6∈ Xf , define IJγ = [T, T + ∆T ], and γ ← {γ, IJγ}, T ← T + ∆T , Jγ ← Jγ + 1.
5: Replace ε← ε/2, δ ← δ/2. Go to Step 1.

A procedure for refining γ (repeatedly if necessary) is given in Section 5.2. In Step 5,
ε ← ε/2 and δ ← δ/2 may be replaced, respectively, by ε ← c1ε and δ ← c2δ, with
c1 ∈ (0, 1) and c2 = (1/2)q (with q ∈ Z>0).

Remark 9. The control u(·) ∈ UγT obtained in Step 1 satisfies θγ(x, u(·)) = 0; if γ̃ is the

refined partition obtained in Step 2, and u(·) is not optimal for Pγ̃T (x), then θγ̃(x, u(·)) < 0.

Remark 10. T is increased in Step 4 if the (implicit) terminal constraint x(T ) ∈ Xf is not
satisfied. As shown later by Theorem 13, this step occurs only a finite number of iterations.

5.2 Refinement strategy

Since the length of each interval in the current partition γ is an even multiple of the current
δ and since the length of all intervals in the refined partition should also be a multiple of
δ, the refinement strategy of Step 2 consists of bisecting each interval with length greater
than or equal to 2δ and selecting a subset whose bisection satisfies the condition in Step 2.
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Suppose the current partition γ consists of the intervals {I0, I1, ..., IJγ−1}. Because the

current u(·) is optimal for PγT (x), then θγj (x, u(·)) = 0 for all j ∈ Jγ , Z0:Jγ−1. If Ij is

bisected, yielding Ij1 = [tj , tj1] and Ij2 = [tj1, tj+1] with tj1 =
tj+tj+1

2 , let wj , (uj , vj) be

replaced by wj1 = (uj ,
uj+vj

2 ) in Ij1 and wj2 = (
uj+vj

2 , vj) in Ij2, and let xj1 and λj1 denote
the value of x(·) (the current state trajectory) and λ(·) at time tj1. Then the gradients
gγj1(x, u(·)) and gγj2(x, u(·)) of the cost with respect to wj1 and wj2 may be computed from
(28) yielding:

θγ̃j (x, u(·)) , θγ̃j1(x, u(·)) + θγ̃j2(x, u(·)), (32)

where θγ̃j1(x, u(·)) and θγ̃j2(x, u(·)) are defined as in (30), respectively, for Ij1 and Ij2. No-

tice that θγ̃j (x, u(·)) ≤ 0 is a lower bound on the cost reduction obtainable by bisecting

Ij . Given a candidate set of intervals to be bisected, J ⊆ Jγ , we obtain: θγ̃(x, u(·)) =∑
j∈J θ

γ̃
j (x, u(·)). By ordering θγ̃j (x, u(·)) in ascending manner, i.e., from the most negative

to the least negative, J is chosen as the subset of Jγ with smallest cardinality such that
the condition in Step 2 is satisfied by θγ̃(x, u(·)). If no such J can be found even if all
intervals Ij are bisected, i.e., if J = Jγ , the procedure is repeated with γ replaced by the
partition with every Ij bisected.

5.3 Practical considerations and algorithm with stopping conditions

The discrete time matrices appearing in the various steps of Algorithm 8 can be computed
and stored offline for a (finite) number of possible interval sizes, in geometric sequence of
ratio 2, using the formulas of § 3. The minimization in (30) is analytic if R∗j are chosen

diagonal, due to the fact that U (and hence U2 also) is a box constraint set. The choice
of R∗j diagonal is always possible, e.g. R∗j , λmin(Rj −M ′jQ

−1
j Mj)I2m is a valid choice

because 0 < R∗j ≤ Rj−M ′jQ
−1
j Mj . For a general polytopic set U, the minimization in (30)

is a small dimensional convex QP, namely in 2m decision variables.
For a given δ, the loop in Steps 1-3 is always exited in a finite number of iterations

because, otherwise, the refinement of γ would reach γδ and then we would have θγ(x, u(·)) =
θδ(x, u(·)) = 0, which makes the condition to proceed to Steps 4-5 true. However, as
written, Algorithm 8 never terminates because it would keep entering Step 5, reducing δ
(and ε) and then going to Step 1.

A practical variant could terminate after Step 1 and return the computed solution u(·)
when θ(x, u(·)) ≥ −ρ, for a given ρ > 0. By doing so, there is a guarantee that the achieved
cost VT (x, u(·)) satisfies: VT (x, u(·)) − V 0

T (x) ≤ ρ. However, evaluation of θ(x, u(·)) from
(26) requires computing a numerical integral of the scalar function ψ : [0, T ] → R≤0

whose value at any time t ∈ [0, T ] is

ψ(t) , min
v∈U
{〈∇uH(xu(t;x), u(t), λu(t;x)), v − u(t)〉+ 1

2 |v − u(t)|2R∗ ,

i.e., θ(x, u(·)) ,
∫ T

0 ψ(t)dt. Notice that if R∗ ≤ R is chosen as a diagonal matrix, the
previous minimization can be performed analytically.

Thus, evaluating θ(x, u(·)) and ensuring an exact bound on the termination error is
achievable, but for fast closed-loop implementations a simpler alternative is to terminate
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after Step 1 when
θδ(x, u(·)) ≥ −ρ. (33)

In this way the computed solution is guaranteed to satisfy VT (x, u(·)) − V δ,0
T (x) ≤ ρ, i.e.,

the solution to PγT (x) is a ρ-close approximation to the problem Pγ
δ

T (x) at the current finest
partition γδ. Notice that ρ should be chosen (significantly) smaller than the initial value
of ε.

6 PROPERTIES OF THE ALGORITHM

In this section we discuss the main properties of Algorithm 8.

6.1 The space of control and state trajectories

In order to analyze the convergence properties, we notice that each u(·) ∈ UT lies in
Lp(T ) , Lp([0, T ],Rm) for all p ∈ {1, 2, . . . ,∞}, in which Lp([0, T ],Rm) = {u : [0, T ] →

Rm | u(·) measurable, ||u(·)||p < ∞}, with ||u(·)||p ,
[∫ T

0 |u(t)|pdt
]1/p

and ||u(·)||∞ ,

ess sup[0,T ] |u(t)|.
The space Lp(T ) is a Banach space. Moreover, the spaces Lp(T ), p = 1, 2, . . . ,∞ are

nested; i.e. p < q implies Lq(T ) ⊂ Lp(T ). In fact, since [0, T ] has finite measure T , for all
u(·) ∈ UT

‖u(·)‖p ≤ T (1/p−1/q)‖u(·)‖q, (34)

so that ‖u(·)‖q → 0 implies ‖u(·)‖p → 0 for all p, q ∈ I≥1, p < q and all u ∈ UT . It is also
possible to show that, for all u(·) ∈ UT and all p, q ∈ I≥1, ‖u(·)‖p → 0, u(·) ∈ UT , implies
‖u(·)‖q → 0.

The next result follows from Theorem 3.1 in [9].

Theorem 11. For all (x, T ) ∈ Rn × R>0, u0
T : [0, T ]→ U is Lipschitz continuous.

Since u(·) is bounded and T is finite, it follows that the solution x(·) = φ(·;x, u(·)) of
(1b) is absolutely continuous for any (x, u(·)) ∈ Rn × UT .

6.2 Convergence of Algorithm 8

Let ui(·), xi(·), εi, γi, δi and Ti denote, respectively, the values of u(·), x(·), ε, γ, δ and T
at iteration i of Algorithm 8, where i ∈ Z≥1 increases each time Step 1 is executed.

Proposition 12. The loop in Steps 1–3 is always exited in a finite number of iterations.

We can now state the main result.

Theorem 13. For each x ∈ X∞, there exists an i∗ ∈ Z≥1 and a T ∗ ∈ R>0 such that Ti = T ∗

and xi(Ti) ∈ Xf for all i ≥ i∗. Also VTi(x, ui(·))→ V 0
T ∗(x) = V 0

∞(x) and ui(·)→ u0
T ∗(·) in

Lp(T
∗) for all p ∈ Z≥1 as i→∞ (with u0

T ∗(·) = u0
∞(·) restricted to [0, T ∗].)
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Proof: Since the loop Steps 1–3 is always exited in a finite number of iterations, both
εi and δi tend to 0 as i → ∞. For each i ∈ Z≥1, let ũi(·) ∈ UTi denote the sample-hold
version of u0

Ti
(·) in a PWLH sense obtained by sampling u0

Ti
(·) at times jδi, j ∈ Z0:(Ti/δi−1);

thus ũi(·) is defined as in (8) with uj , u0
Ti

(jδi) and vj , u0
Ti

(j + 1)δi). Let T † denote the
smallest time T such that x0

T (T ) ∈ Xf . By Theorem 11, u0
T †

(·) is Lipschitz continuous in

[0, T †] with Lipschitz constant κ1 and is equal to u0
∞(·) (the optimal control for P∞(x))

restricted to [0, T †]. In [T †,∞), u0
∞(·) is as defined in (6) with T = T †; since x0

∞(·) is
bounded in [T †,∞) (because x0

∞(t) ∈ Xf , t ∈ [T †,∞)), so is u̇0
∞(·) in [T †,∞). Hence u0

∞(·)
is Lipschitz continuous with constant κ2 in this interval. It follows that u0

T (·) is Lipschitz
continuous for all T ∈ [0,∞) with Lipschitz constant κ = max{κ1, κ2}.

Since δi → 0 as i → ∞, {ũi(·) ∈ UδiTi | i ∈ Z≥1} is a sequence of controls satisfying

||ũi(·)− u0
Ti

(·)||∞ → 0 as i→∞ so that |V 0
Ti

(x)− VTi(x, ũi(·))| → 0 as i→∞. Let V δi,0
Ti

(·)
be the optimal value function for Pγ

δi

Ti
(x). Then V 0

Ti
(x) ≤ V δi,0

Ti
(x) ≤ VTi(x, ũi(·))) for all i

so that |V δi,0
Ti

(x)−V 0
Ti

(x)| → 0 as i→∞. The algorithm ensures VTi(x, ui(·)) = V γi,0
Ti

(x) ≥
V δi,0
Ti

(x) for all i. Hence

V 0
Ti(x) ≤ V δi,0

Ti
(x) ≤ VTi(x, ui(·)) ≤ V

δi,0
Ti

(x)− θδi(x, ui(·))

where the last inequality follows from (31) with γ chosen as γδi . It follows from the

convergence of |V δi,0
Ti

(x)− V 0
Ti

(x)| and of θδi(x, ui(·)) to zero, that

|VTi(x, ui(·))− V 0
Ti(x)| → 0

as i→∞.
In (25) let ν(·) = ui(·), u(·) = u0

Ti
(·) and T = Ti noting that V 0

Ti
(x) = VTi(x, u

0
i (·)).

The first order component (first line) of VTi(x, ν(·))−VTi(x, u(·)) is non-negative since both
ν(·) = ui(·) and u(·) = u0

Ti
(·) lie in UTi and u0

Ti
(·) is optimal. Since |VTi(x, ui(·))−V 0

Ti
(x)| →

0, each term on the right hand side of (25), in particular, (1/2)|xi(Ti)−x0
Ti

(Ti)|P , tends to
zero as i→∞. Hence |xi(Ti)−x0

Ti
(Ti)| → 0 as i→∞. From Proposition 4, it follows that

x0
Ti

(Ti)→ 0 as Ti →∞. Thus xi(Ti)→ 0 as i→∞ if Step 4 is entered at every iteration of
the algorithm. However, since Ti increases by a finite amount each time Step 4 is entered,
there exists a finite integer i∗ such that xi(Ti) ∈ Xf and Ti = T ∗ for all i ≥ i∗ (Ti stops
increasing only after xi(Ti) enters Xf ). This also implies that x0

Ti
(Ti) ∈ Xf for all i ≥ i∗.

Since x0
Ti

(Ti) ∈ Xf implies V 0
Ti

(x) = V 0
∞(x), it follows that VTi(x, ui(·))→ V 0

T ∗(x) = V 0
∞(x)

as i→∞.
It follows from (25), with ν(·) = ui(·) and u(·) = u0

T ∗(·), and the non-optimality of
ν(·) = ui(·) that

(1/2)

∫ T ∗

0
|ui(t)− u0

T ∗(t)|2Rdt ≤ VT ∗(x, ui(·))− V 0
T ∗(x)

for all i ≥ i∗ so that ui(·)→ u0
T ∗(·) in L2(T ∗) (hence, in Lp(T

∗) for any p ∈ Z>0) as i→∞,
where u0

T ∗(·) = u0
∞(·) restricted to [0, T ∗].
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Remark 14. To prove this theorem, we do not have to assume that the largest interval in
the partition goes to zero as i→∞.

7 APPLICATION EXAMPLES

7.1 Introduction and performance indicators

We present in this section some illustrative simulation results. Computations are performed
in Matlab (R2012b) on a MacBook Air (1.8 GHz Intel Core i7, 4 GB of RAM). The
discretized CLQR problems PγT (x) are solved using the function quadprog.m 1, in which
both (augmented) input and state sequences ({wj} and {xj}) are the QP decision variables
(see, e.g., [22]). Timing is measured with the functions tic and toc. We remark that with
this formulation and solver, the solution time approximately scales linearly with the number
of intervals Jγ . All required discretized matrices are precomputed offline and stored in order
to speed up the online computations. The following performance indicators are considered
during the execution of Algorithm 8:

• number of intervals, Jγ , at a given iteration;

• continuous time cost error bound, −θ(x, u(·)), at a given iteration;

• cumulative solution time (in ms) of all past and current iterations.

In the computation of θδ(x, u(·)) given in (29)–(30) we use R∗j , λmin(Rj −M ′jQ
−1
j Mj),

and in the computation of θ(x, u(·)) given in (26) we use R∗ , R (because in all examples
we use continuous time R diagonal).

7.2 Example # 1: SISO open-loop stable system

The first example is a three-state one-input system defined by the (continuous time) ma-
trices:

A =
[−0.1 0 0

0 −2.0 −6.25
0 4.0 0

]
, B =

[
0.25
2.0
0

]
, Q =

[
1 0 0
0 1 0
0 0 1

]
, R = 0.1.

We remark that the system matrix A has three stable eigenvalues (−0.1, −1 ± 4.899i).
Given the initial state x(0) = [ 1.3440 −4.5850 5.6470 ]′, we consider the first five iterations of
Algorithm 8 in three different variants:

• using PWLH parameterization (8) and adaptive refinement as in § 5.2;

• using PWLH parameterization (8) and fixed refinement in which all intervals are
bisected;

• using ZOH parameterization (7) and fixed refinement in which all intervals are bi-
sected.

1With options: ’interior-point-convex’ algorithm, ’function tolerance’ of 10−12 and ’variable toler-
ance’ of 10−10.
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Figure 2: Example 1: Performance indicators during the first five iterations of Algorithm 8
using PWLH with adaptive discretization refinement (red), PWLH with fixed discretization
refinement (blue), ZOH with fixed discretization refinement (green).

In all cases we use the following fixed parameters T = 10, c = 0.8, and initial values of
δ = 0.125 and ε = 0.1. The storage of the required discretized matrices, for 11 different
interval sizes, takes 7 kB. Comparative results are depicted in Figure 2 in which number of
intervals and solution time are plotted against the continuous time cost error bound. By
comparing adaptive and fixed refinement strategies (using the same PWLH parametriza-
tion) we immediately observe that the adaptive refinement allows Algorithm 8 to achieve
smaller errors with far fewer intervals (top plot), and in turns this reduces the required
computation time (bottom plot). By comparing PWLH and ZOH (using the same fixed
refinement procedure, i.e. the same discretization) we observe that PWLH grants a much
lower error than ZOH for the same number of intervals (top plot).

In order to further examine the efficiency of the adaptive refinement procedure we depict
in Figure 3 the input ui(·) achieved during each iteration of Algorithm 8 using PWLH. In
this picture the discretization intervals at each iteration are also reported. From this picture
we notice that the devised adaptive procedure is able to detect, at each iteration, which
intervals require (possibly repeated) bisection. Hence, the proposed algorithm appears
parsimonious in the usage of intervals and hence of decision variables in the discretized
CLQR problems PγT (x).
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Figure 3: Example 1: Input uγ(·) computed during the first five iterations of Algorithm 8
using PWLH, and associated (adaptive) discretization intervals.

Next, we discuss the closed-loop performance of the proposed continuous time CLQR
and compare it with that of standard discrete time MPC, formulated as in [22] and solved
using the function quadprog.m with same options and tolerances used in solving problems
PγT (x). Every sampling time Ts, given the current state x, we solve PT (x) and inject
the first portion, t ∈ [0, Ts), of the computed input u(·). Three controllers, which use a
sampling time of Ts = 1 s, are compared: CTCLQR 1 and CTCLQR 2 use Algorithm 8
with PWLH parameterization and stopping condition (33) for ρ = 5 ·10−4 and ρ = 5 ·10−3,
respectively; DTMPC 1 is a discrete time MPC with horizon N = 10 (hence same finite
time as CTCLQR 1 and CTCLQR 2 of T = TsN = 10s). DTMPC 2 instead uses a horizon
of N = 200 and hence a sampling time of Ts = T/N = 0.05 s. In Table 1 we report: the
ratio between computation time TC and sampling time Ts, the closed-loop suboptimality
with respect to CTCLQR 1 defined as (VCL − V 0

CL)/V 0
CL in which VCL =

∫ Tf
0 `(x, u)dt,

Tf = 20 s, is the closed-loop cost achieved with a given controller and V 0
CL is that achieved

with CTCLQR 1. We can observe that CTCLQR 2 has a small relative suboptimality
of (up to 0.53%), whereas DTMPC 1 has a suboptimality (up to 28.2%). By decreasing
the sample time, DTMPC 2 achieves a small suboptimality (up to 0.12%). However,
CTCLQR 1, CTCLQR 2 and DTMPC 1 have computation times significantly smaller
than their sampling time. DTMPC 2, instead, have computation times similar and even
larger than its sampling time.
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Table 1: Example 1: closed-loop performance comparison of continuous time CLQR and
discrete time MPC. Results are averaged over 50 closed-loop simulations of 20 s, each
starting from a different random initial state.

Controller (TC/Ts) (VCL − V 0
CL)/V 0

CL

Mean Max Mean Max

CTCLQR 1 (ρ = 5 · 10−4, Ts = 1 s) 0.0229 0.1144 – –
CTCLQR 2 (ρ = 5 · 10−3, Ts = 1 s) 0.0178 0.0585 0.0018 0.0053
DTMPC 1 (N = 10, Ts = 1 s) 0.0096 0.0141 0.1223 0.2820
DTMPC 2 (N = 200, Ts = 0.05 s) 0.8141 1.3879 0.0002 0.0012

7.3 Example #2: MIMO open-loop unstable system

The second example is an open-loop unstable three-input three-output system defined by
the transfer function matrix:

G(s) =


−5s+1

36s2+6s+1
0.5

8s+1 0

0 0.1(−10s+1)
(8s+1)s

−0.1
(64s2+6s+1)s

−2s+1
12s2+3s+1

0 2(−5s+1)
16s2+2s+1

 .
A minimal realization of the system has n = 10 states. The input constraint set is U =
[−1, 1]3, and we consider continuous time LQR penalties of Q = I10 and R = 0.25 I3.

As in the first example, we first focus on the solution of PT (x) for a given (random)
initial state, chosen in a way that inputs constraints become active for some time in [0, T ].
We consider the same three variants of Algorithm 8 discussed in the first example (namely,
PWLH with adaptive refinement, PWLH with fixed refinement and ZOH with fixed refine-
ment), and in all cases we use the following parameters T = 60, c = 0.85, and initial values
of δ = 0.75 and ε = 0.1. The storage of the required discretized matrices, for 11 different
interval sizes, takes 82 kB. Comparative results are depicted in Figure 4 in which number
of intervals and solution time are plotted against the continuous time cost error bound
during the algorithm’s iterations. Also in this multivariable example we observe that the
adaptive refining strategy is much more effective than a brute force bisection approach.
For instance, at the second iteration the adaptive refining strategy (red curves) uses about
20 intervals and the cost error bound is less than 10−3, value that is achieved by the fixed
refinement strategy (blue curves) at the fourth iteration using 40 intervals. Consequently,
the cumulative computation time is less than 100 ms using adaptive bisection and is about
220 ms using fixed bisection. Similar considerations apply to other iterations.

In Table 2 we report the performance indicators, as discussed for the first example,
using four alternative controllers in closed-loop implementation (sampling time Ts = 5 s,
for all controllers except DTMPC 2). In particular, CTCLQR 1 and CTCLQR 2 use
Algorithm 8 with PWLH parameterization and stopping condition (33) with ρ = 10−4 and
ρ = 10−3, respectively; DTMPC 1 is a discrete time MPC with horizon N = 12 (hence
same finite time as CTCLQR 1 and CTCLQR 2 of T = TsN = 60 s). DTMPC 2 instead
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Figure 4: Example 2: Performance indicators during the first five iterations of Algorithm 8
using PWLH with adaptive discretization refinement (red), PWLH with fixed discretization
refinement (blue), ZOH with fixed discretization refinement (green).

uses a horizon of N = 240 and hence a sampling time of Ts = T/N = 0.25 s. We notice,
as in the first example, that CTCLQR 1, CTCLQR 2 and DTMPC 1 have (average and
maximum) computation times much smaller than the sampling time. However, DTMPC 1
is rather suboptimal (3.67% on average, up to 11.7%). By decreasing the sampling time,
DTMPC 2 is much less suboptimal than DTMPC 1 (0.76% on average, up to 3.04%), but
DTMPC 2 has an average computation time more than twice its sampling time (almost
five times in worst case). From these results it is clear than CTCLQR 1 and CTCLQR 2
provide much better results than standard discrete-time MPC algorithms.

8 CONCLUSIONS

The method presented in this paper solves the input constrained, infinite horizon, con-
tinuous time linear quadratic regulator problem to a user specified accuracy. The doubly
infinite dimensional nature of the problem is addressed without undue online computation.
The algorithm is efficient due to the storage of matrix exponentials for exact solution of
the model, cost, and gradients at several levels of discretization. The storage requirement
for these matrices is minor. The issue of implementation of this continuous time input in
a standard industrial control system has been separated from the numerical solution of
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Table 2: Example 2: closed-loop performance comparison of continuous time CLQR and
discrete time MPC. Results are averaged over 50 closed-loop simulations of 60 s, each
starting from a different random initial state.

Controller (TC/Ts) (VCL − V 0
CL)/V 0

CL

Mean Max Mean Max

CTCLQR 1 (ρ = 1 · 10−4, Ts = 5 s) 0.0069 0.0288 – –
CTCLQR 2 (ρ = 1 · 10−3, Ts = 5 s) 0.0061 0.0224 0.0009 0.0233
DTMPC 1 (N = 12, Ts = 5 s) 0.0033 0.0045 0.0367 0.1174
DTMPC 2 (N = 240, Ts = 0.25 s) 2.3335 4.9087 0.0076 0.0304

the CLQR problem. The small interface code required to deliver a piecewise linear input
to the actuator hardware, when it is digital, can evolve as the capabilities of the actuator
hardware improve; discretization effects are negligible given the relatively small sampling
time of the digital actuator. With this approach, the MPC problem and solution method
are independent of sample time and actuator hardware.

The advantages of discrete time linear MPC, and the reasons for its dominant position
in industrial implementations, are mainly computational. All that is required for imple-
mentation is the solution of a strictly convex, finite dimensional quadratic program, and
standard software exists for solving the QP to near machine precision in a finite number of
iterations. But if one wants to implement an algorithm with a guarantee of even nominal
recursive feasibility and closed-loop stability, more is required. Current theory requires a
terminal penalty and an implicit or explicit terminal constraint. The terminal constraint
restricts the set of feasible initial states that can be handled. One method to offset this
reduction in the feasible set is to increase the horizon length. But computational cost in-
creases at least linearly with horizon length, so this creates an unpleasant tradeoff between
the size of the feasible set and computational efficiency. The same difficult tradeoff applies
to the choice of sample time. If chosen too large, closed-loop performance and robustness
to disturbances degrade; if chosen too small, the horizon and computation time are exces-
sively large or the feasible set of initial states is excessively small. For online solutions as
in MPC, it is often intractable to solve the infinite horizon discrete time problem because
the input parameterization as a zero-order hold with a fixed and short sample time is
inefficient. (See Figure 3, for example.)

The use of the infinite horizon, continuous time CLQR in MPC removes the need for
terminal sets and terminal constraints. Of course we made liberal use of both in designing
the CLQR algorithm, but those details can be hidden in the algorithm itself. The higher
level controller design problem is free from these considerations. The simplicity of the
resulting CLQR theory may be its most significant advantage. Nominal recursive feasibility
and closed-loop stability follow directly from the optimal control problem’s design. The
CLQR feasible set is the largest set possible, i.e., the set of states for which there exists an
input trajectory with a finite infinite horizon open-loop cost.

It remains to be seen whether this kind of approach can handle the largest industrial



TWCCC Technical Report 2014-01 23

applications, which currently consist of hundreds or thousands of state variables. Because
all notions of sample time are removed from the regulation problem, sample time can be
chosen as a design parameter relevant to sensor hardware and robustness to disturbances,
without consideration of the underlying regulation problem. This comment, of course,
presumes that the regulation computation is at least as fast as the desired sampling rate.
Research directed at further improving the online efficiency of solving the CLQR is therefore
always relevant.

Finally, the issue of identification of the underlying linear model remains relevant to the
choice of continuous versus discrete time in the regulation problem. In the identification
field also, we notice the rise and fall in popularity of the time description, from continuous
time parametric model identification to discrete time subspace model identification. It
is not entirely clear what new challenges using continuous time linear models for MPC
may present for the model identification task. From the regulation side of the problem,
certainly future research should be directed towards handling multiple time delays, which
change the underlying model from differential equations to delay-differential equations, a
not insignificant increase in complexity.
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A Complementary material

The following Lemma is used in the proof of Proposition 4.

Lemma 15 (An instability result). Consider an asymptotically stable linear system ẋ =
Ax+Bu, a sequence of times {Ti} with Ti →∞ as i→∞, and a sequence of measurable
inputs ui : [0, Ti]→ U with corresponding solutions xi : [0, Ti]→ Rn. Then if |xi(t)| ≥ a > 0
for all t ∈ [0, Ti] and all i,

‖ui(·)‖2 →∞ as i→∞

Proof: Since A is Hurwitz, there exists c > 0 and λ < 0 such that
∣∣eAt∣∣ ≤ ceλt for all

t ≥ 0. Using this bound and the Cauchy-Schwartz inequality in the solution of the linear
system then gives the following bound

|x(t)|2 ≤ c1e
2λt |x(0)|2 + c2

∫ t

0
|u(τ)|22 dτ

with c1 = 2c2 and c2 = 2c2 |B|2 /(−2λ), where |B| is the induced 2-norm of matrix B.
Choose time ∆ > 0 such that c1e

2λ∆ = ρ < 1. We then have

c2

∥∥u[0,∆]

∥∥2

2
≥ |x(∆)|2 − ρ |x(0)|2

c2

∥∥u[∆,2∆]

∥∥2

2
≥ |x(2∆)|2 − ρ |x(∆)|2

c2

∥∥u[2∆,3∆]

∥∥2

2
≥ |x(3∆)|2 − ρ |x(2∆)|2

and so on. Adding these up to time j∆ gives

c2

∥∥u[0,j∆]

∥∥2

2
≥ (1− ρ)

j∑
k=1

|x(k∆)|2 − ρ |x(0)|2

If |xi(t)| ≥ a for all t ∈ [0, Ti], we have that c2 ‖ui(·)‖22 ≥ a2(1− ρ)bTi/∆c − ρ |x(0)|2, and
therefore ‖ui(·)‖2 →∞ as i→∞.

The following Proposition and proof were kindly supplied by R. B. Vinter:

Proposition 16. Consider a function L : [0, T ] × Rm → R and set U ⊂ Rm that satisfy
the conditions:

1. L(·, v) is a Lebesgue measurable function for each v and L(t, ·) is continuous for each t

2. U is compact

3. L(·, ·) is bounded on bounded sets

Then:

inf

{∫ T

0
L(t, v(t))dt | v(·) is a selector of U

}
=

∫ T

0
min
v∈U

L(t, v)dt

Here ‘selector’ means ‘measurable function v(·) such that v(t) ∈ U a.e. in [0, T ]’.
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Proof: Let L̂(t) , minv∈U L(t, v). By Theorem 2.3.14 in [30], L̂(·) is measurable. Take
any selector v(·) of U. Then t→ L(t, v(t)) is measurable and L̂(t)− L(t, v(t)) ≤ 0 a.e. by
definition of L̂(·). Since, under the assumptions, L̂(·) and t 7→ L(t, v(t)) are integrable, we
have ∫ T

0
L̂(t)dt−

∫ T

0
L(t, v(t))dt =

∫ T

0

(
L̂(t)dt− L(t, v(t))

)
dt ≤ 0.

But v(·) was chosen arbitrarily. So∫ T

0
L̂(t)dt ≤ inf

{∫ T

0
L(t, v(t))dt | v(·) is a selector of U

}
. (35)

On the other hand, it follows from Filippov’s Generalized Selection Theorem as stated, for
example, in Theorem 2.3.13 in [30] that there exists a selector v̄(·) of U such that

L(t, v̄(t)) = L̂(t) a.e.

(To see this, identify the scalar valued function g(·, ·) and the measurable function v(·) in
this reference with L(·, ·) and L̂(·) respectively). But then, since the relevant integrands
are integrable functions,

inf

{∫ T

0
L(t, v(t))dt | v(·) is a selector of U

}
≤
∫ T

0
L(t, v̄(t))dt =

∫ T

0
L̂(t)dt. (36)

(35) and (36) combine to give the required relationship.


