Addendum to the paper “Is suboptimal nonlinear MPC inherently robust?”

Gabriele Pannocchia*
Univ. of Pisa. (ITALY)

James B. Rawlings†
Univ. of Wisconsin. (USA)

Stephen J. Wright‡
Comp. Sc. Dept.
Univ. of Wisconsin. (USA)

March 31, 2011

Abstract

In this report we present detailed proofs of the results presented in the paper “Is suboptimal nonlinear MPC inherently robust?” [1], which were omitted in the published paper due to space limitations.

Keywords

Nonlinear MPC, Suboptimal solutions, Robust stability, Lyapunov functions

1 Statements and omitted proofs

We report in the statement of some results and the proofs omitted from the paper “Is suboptimal nonlinear MPC inherently robust?” [1]. All numberings are referred to the paper [1].

Proposition 5. Any $u_0^\gamma(x^+)$, optimal solution to $P_N(x^+)$, satisfies conditions (3a)–(3b) for all $x^+ \in X_N$. Moreover, if $x^+ \in X_f$ condition (3c) is satisfied by $u^0(x^+)$.

*Email: g.pannocchia@diccism.unipi.it. Author to whom all correspondence should be addressed.
†Email: rawlings@engr.wisc.edu
‡Email: swright@cs.wisc.edu
Thus, choosing V for inclusion Proposition 7. We have that $\kappa_N(0) = \{0\}$ and $F(0) = \{0\}$.

Proof: From $\ell(x, u) \geq a_1|(x, u)|^a$ and from $V_f(x) \geq 0$, we have

$$V_N(x, u) \geq a_1' \sum_{k=0}^{N-1} |(\phi(k; x, u), u(k))|^a \geq a_1' \left[|(x, u(0))|^a + \sum_{k=1}^{N-1} |u(k)|^a \right] \geq a_1' N^{-a} |(x, u)|^a,$$

Thus, choosing a_1 to satisfy $0 < a_1 \leq N^{-a} a_1'$, we have that $V_N(x, u) \geq a_1|(x, u)|^a$ for all $(x, u) \in \mathbb{X} \times \mathbb{U}^N$. From (3c), Assumptions 1 and 4, we have that $a_1' |(0, u)|^a \leq V_N(0, u) \leq V_f(0) = 0$. Thus, it follows that $u = 0$ and hence $\kappa_N(0) = u(0; 0) = \{0\}$. The second result then follows from Assumption 1.

Proposition 10. If V is an exponential Lyapunov function on the set \mathcal{Z} for the difference inclusion $z^+ \in H(z)$, there exists $0 < \gamma < 1$ such that:

$$\max_{z^+ \in H(z)} V(z^+) \leq \gamma V(z)$$

Proof: From the definition of V, $z \in \mathcal{Z}$ implies that

$$\max_{z^+ \in H(z)} V(z^+) \leq V(z) - a_3 |z|^a \leq V(z) - \frac{a_3}{a_2} V(z) \leq \gamma V(z)$$

for $\gamma > 1 - a_3/a_2$. Since $a_2 \geq a_3 > 0$, we have $0 < \gamma < 1$.

Lemma 11. If the set \mathcal{Z}, $0 \in \mathcal{Z}$, is positively invariant for the difference inclusion $z^+ \in H(z)$, $H(0) = \{0\}$, and there exists an exponential Lyapunov function V on \mathcal{Z} the origin is ES on \mathcal{Z}.

Proof: Since $\psi(k; z) \in \mathcal{Z}$ for all $k \in \mathbb{I}_{\geq 0}$, and using Proposition 10, we write:

$$|\psi(k; z)|^a \leq \frac{V(\psi(k; z))}{a_1} \leq \frac{\lambda^k V(z)}{a_1} \leq \frac{\lambda}{a_1} a_2 |z|^a. \quad \text{Thus, we obtain: } |\psi(k; z)| \leq b\lambda^k |z| \text{ in which } \lambda = \gamma^{1/a} \text{ and } b = \left(\frac{\gamma^a}{a_1} \right)^{1/a}, \text{ and we note that } 0 < \lambda < 1.$$

Lemma 12. There exists a positive constant c such that $|u| \leq c|x|$ for any $(x, u) \in \mathcal{Z}$.

Proof:
Proof: We first show that $|u| \leq \bar{c}|x|$ holds, for some \bar{c}, if $x \in rB \subseteq X_f$. Recall from the proof of Proposition 7 that there is $a_1 > 0$ such that $a_1 |(x,u)|^\alpha \leq V_N(x,u)$ for all $(x,u) \in X \times U_N$. For $x \in rB \subseteq X_f \subseteq X$, we can therefore write:

$$a_1 |u|^\alpha \leq a_1 |(x,u)|^\alpha \leq V_N(x,u) \leq V_f(x) \leq a_f|x|^\alpha$$

Thus, given any $\bar{c} \geq (a_f/a_1)^{(1/\alpha)}$ we obtain $|u| \leq \bar{c}|x|$ for any $x \in rB$. Define $\mu = \max_{u \in U_N} |u|$, and note that $\mu < \infty$ because U_N is compact. Choosing $c \geq \max\{\bar{c}, c\}$, we observe that $|u| \leq c|x|$ for all $(x,u) \in Z_r$. In fact, if $x \in rB$ we have that $|u| \leq \bar{c}|x| \leq c|x|$; while if $x \notin rB$ we have that $|u| \leq \mu \leq \frac{\mu|x|}{r} \leq c|x|$.

Lemma 13. $V_N(z)$ is an exponential Lyapunov function for the extended closed-loop system (5) in any compact subset of Z_r.

Proof: As established in the proof of Proposition 7, we have that $a_1 |z|^\alpha \leq V_N(z)$ for some $a_1 > 0$ and all $z \in Z_r$. Consider any compact set $C \subseteq Z_r$ and define: $\mu = \max_{z \in C} V_N(z)$. Note that from Assumption 1, it follows that $V_N(\cdot)$ is continuous; thus, μ is well defined. From Assumption 4, if we choose $a_2 \geq \max\{\mu/r^a, a'_2\}$, we have that:

$$V_N(z) \leq a_2 |z|^a \quad \text{for all } z \in C.$$

We verify this fact by noting that if $z \in rB \cap Z_r$, we have from Assumption 4 that $V_N(z) \leq a'_2 |z|^a \leq a_2 |z|^a$; if instead $z \in Z_r \setminus rB$ we have that $V_N(z) \leq \mu \leq |z|^a/r^a \leq a_2 |z|^a$. We now prove that $V_N(z^+) \leq V_N(z) - a_3 |z|^a$ for all $z^+ \in H(z)$ and $z \in Z_r$. In fact, for all $z^+ \in H(z)$ we have from Assumption 4 that

$$V_N(z^+) \leq V_N(z) - \ell(x,u(0)) \leq V_N(z) - a'_1 |(x,u(0))|^a.$$

From Lemma 12 we can write:

$$|z| \leq (|x| + |u|) \leq (1 + c)|x| \leq (1 + c)|(x,u(0))|$$

Thus, if we define a positive constant $a_3 \leq \frac{a'_1}{(1+c)^a}$, we can write:

$$V_N(z^+) \leq V_N(z) - a'_1 |(x,u(0))|^a \leq V_N(z) - \frac{a'_1}{(1+c)^a} |z|^a \leq V_N(z) - a_3 |z|^a$$

for all $z^+ \in H(z)$ and $z \in Z_r$. □

Lemma 20. For every $\mu > 0$, there exists a $\delta > 0$ such that, for all (z_m,e,d,e^+) in $Z_r \times \delta B \times \delta B \times \delta B$, $z = z_m - (e,0)$, such that $x^+_m \in X_N$, and some γ, $0 < \gamma < 1$, we have:

$$\max_{z^+ \in H_{ed}(z)} V_N(z^+) \leq \max\{\gamma V_N(z), \mu\}$$

Proof: Let $\mu > 0$ be given. The value $V_N(\bar{x}^+, \bar{u})$ is the cost along the nominal trajectory (no disturbance). Therefore since $V_N(\cdot)$ is an exponential Lyapunov function for the nominal system (Lemma 13), Proposition 10 gives that

$$V_N(\bar{x}^+, \bar{u}) \leq V_N(z_m) - \ell(x_m, u(0); x_m) \leq \gamma V_N(z_m)$$
for some $0 < \gamma < 1$. Consider a γ such that $\gamma < \gamma < 1$, and define $\rho = \mu(\gamma - \gamma) > 0$. Recall that: $\hat{x}^{+} - x_{m}^{+} = f(x_{m}, u(0; x_{m})) - f(x, u(0; x_{m})) - d - e^{+}$. Due to continuity of V_{N} and f, and because of $|p| \leq \sigma(|\hat{x}^{+} - x_{m}^{+}|)$, we can choose $\delta_{1} > 0$ such that the following condition holds for all $(z_{m}, e, d, e^{+}) \in \mathcal{Z}_{r} \times \delta_{1} \mathbb{B} \times \delta_{1} \mathbb{B} \times \delta_{1} \mathbb{B}$, $z = z_{m} - (e, 0)$:

$$V_{N}(x_{m}^{+}, \bar{u} + p) \leq V_{N}(\hat{x}^{+}, \bar{u}) + \frac{\rho}{3}.$$

(1)

By continuity of V_{N}, choose $\delta_{2} > 0$ such that the condition:

$$V_{N}(\hat{x}^{+}, \bar{u}) \leq \gamma V_{N}(x_{m}, u) \leq \gamma V_{N}(x, u) + \frac{\rho}{3}$$

(2)

holds for all $(z_{m}, e) \in \mathcal{Z}_{r} \times \delta_{2} \mathbb{B}$, $z = z_{m} - (e, 0)$. From continuity of V_{N} and f and from (11b), choose $\delta_{3} > 0$ such that

$$V_{N}(x^{+}, u^{+}) \leq V_{N}(x_{m}^{+}, u^{+}) + \frac{\rho}{3} \leq V_{N}(x_{m}^{+}, \bar{u} + p) + \frac{\rho}{3}$$

(3)

for all $z^{+} = (x^{+}, u^{+}) \in H_{ed}(z)$ and all $(z_{m}, e, d, e^{+}) \in \mathcal{Z}_{r} \times \delta_{3} \mathbb{B} \times \delta_{3} \mathbb{B} \times \delta_{3} \mathbb{B}$, $z = z_{m} - (e, 0)$. Defining $\delta = \min\{\delta_{1}, \delta_{1}, \delta_{3}\}$, and summing up (the most external sides of) (1)–(3), we obtain:

$$\max_{z^{+} \in H_{ed}(z)} V_{N}(z^{+}) \leq \gamma V_{N}(z) + \rho$$

for all $(z_{m}, e, d, e^{+}) \in \mathcal{Z}_{r} \times \delta \mathbb{B} \times \delta \mathbb{B} \times \delta \mathbb{B}$, $z = z_{m} - (e, 0)$. Define $\mathcal{Z}_{1} = \{z = z_{m} - (e, 0) \mid z_{m} \in Z_{r}, e \in \delta \mathbb{B}, V_{N}(z) \leq \mu\}$ and $\mathcal{Z}_{2} = \{z = z_{m} - (e, 0) \mid z_{m} \in Z_{r}, e \in \delta \mathbb{B}, V_{N}(z) > \mu\}$, and assume that μ is not so large that \mathcal{Z}_{2} is empty (otherwise the proof is simpler). If $z \in \mathcal{Z}_{2}$ we can write: $\max_{z^{+} \in H_{ed}(z)} V_{N}(z^{+}) \leq \gamma V_{N}(z) + \rho \leq \gamma V_{N}(z) + \mu(\gamma - \gamma) \leq \mu$. If instead $z \in \mathcal{Z}_{2}$ we can write: $\max_{z^{+} \in H_{ed}(z)} V_{N}(z^{+}) \leq \gamma V_{N}(z) + \mu(\gamma - \gamma) \leq \gamma V_{N}(z)$. Therefore, we have established that the condition:

$$\max_{z^{+} \in H_{ed}(z)} V_{N}(z^{+}) \leq \max\{\gamma V_{N}(z), \mu\}$$

holds for all $(z_{m}, e, d, e^{+}) \in \mathcal{Z}_{r} \times \delta \mathbb{B} \times \delta \mathbb{B} \times \delta \mathbb{B}$, $z = z_{m} - (e, 0)$, such that $x_{m}^{+} \in X_{N}$. \hspace{1cm} \square

References