Model Predictive Control: Current Status and Future Challenges

James B. Rawlings
Department of Chemical and Biological Engineering
University of Wisconsin–Madison

UCLA Control Symposium
May 12, 2006

Outline
1. Overview
2. MPC at the Small Scale
 - MPC to replace PID
3. MPC at the Large Scale
 - Large, networked systems
4. MPC and State Estimation
5. Conclusions

Separation of the control problem

Input/output description

Estimation problem

Control problem

Regulation problem

State description

Rawlings (UW) MPC: Status and Future UCLA Control Symposium 1 / 51

Rawlings (UW) MPC: Status and Future UCLA Control Symposium 2 / 51

Rawlings (UW) MPC: Status and Future UCLA Control Symposium 3 / 51

Rawlings (UW) MPC: Status and Future UCLA Control Symposium 4 / 51

The Regulation Problem

- Model and constraints
- Objective function
- Feedback

Models and constraints

Linear dynamics and constraints

\[
\frac{dx}{dt} = Ax + Bu \\
y = Cx \\
Du \leq d \\
Hx \leq h \\
u^2 \\
x^2
\]

Objective Function

Controller objective function

\[
\Phi(x, u(t)) = \sum_{k=0}^{\infty} L(x_k, u_k) \\
L(x, u) = x'Qx + u'Ru, \quad \text{quadratic measure common}
\]

Process models (cont.)

Nonlinear dynamics and constraints

\[
\frac{dx}{dt} = f(x, u) \\
y = g(x) \\
u \in U \\
x \in X \\
\text{Past} \quad \text{Present} \quad \text{Future}
\]

Objective Function

Controller objective function

\[
\Phi(x, u(t)) = \sum_{k=0}^{\infty} L(x_k, u_k) \\
L(x, u) = x'Qx + u'Ru, \quad \text{quadratic measure common}
\]
One technique for obtaining a feedback controller synthesis from knowledge of open-loop controllers is to measure the current control process state and then compute very rapidly for the open-loop control function. The first portion of this function is then used during a short time interval, after which a new measurement of the process state is made and a new open-loop control function is computed for this new measurement. The procedure is then repeated.

— Lee and Markus (1967)

Foundations of Optimal Control Theory

Everything has been thought of before, but the problem is to think of it again.

— Goethe

A finite horizon objective function may not even stabilize!
• How is this possible?

Adding a terminal constraint ensures stability
• May cause infeasibility
• Open-loop predictions not equal to closed-loop behavior
Infinite horizon solution

- The infinite horizon ensures stability
- Open-loop predictions equal to closed-loop behavior
- May be difficult to implement

\[\Phi_{k+1} = \Phi_k - L(x_k, u_k) \]

\[\Phi_{k+2} = \Phi_{k+1} - L(x_{k+1}, u_{k+1}) \]

Full Enumeration

- Unconstrained solution: LQ regulator (?)
 \[u = Kx \]
- Constrained solution: MPC
 \[u_0 = K_i x + b_i \]
 in which \(i \) enumerates different possible active sets for the inequality constraints (?)
- There are \(3^{mN} \) different active sets

\[\begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_k \end{bmatrix} \leq \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix} \]
\[k = 1, \ldots, N \]

The active set table

<table>
<thead>
<tr>
<th>(i)</th>
<th>constraint set</th>
<th>(K_i)</th>
<th>(b_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>({ \pi, \pi })</td>
<td>0</td>
<td>(\pi)</td>
</tr>
<tr>
<td>2</td>
<td>({ \pi, -})</td>
<td>0</td>
<td>(\pi)</td>
</tr>
<tr>
<td>3</td>
<td>({ \pi, u })</td>
<td>0</td>
<td>(\pi)</td>
</tr>
<tr>
<td>4</td>
<td>({ -, \pi })</td>
<td>(K_4)</td>
<td>(b_4)</td>
</tr>
<tr>
<td>5</td>
<td>({ -, -, })</td>
<td>(K_6)</td>
<td>(b_6)</td>
</tr>
<tr>
<td>6</td>
<td>({ u, -})</td>
<td>(K_6)</td>
<td>(b_6)</td>
</tr>
<tr>
<td>7</td>
<td>({ u, \pi })</td>
<td>0</td>
<td>(u)</td>
</tr>
<tr>
<td>8</td>
<td>({ u, -})</td>
<td>0</td>
<td>(u)</td>
</tr>
<tr>
<td>9</td>
<td>({ u, u })</td>
<td>0</td>
<td>(u)</td>
</tr>
</tbody>
</table>

Example 1 — First order plus time delay

\[u_0 = K_i x + b_i \]

\[N = 2 \]

\[N = 4 \]

- The first example is a first order plus time delay (FOPTD) system (?)
 \[G_1(s) = \frac{e^{-2s}}{10s + 1} \]
 sampled with \(T_s = 0.25 \)
- The input is assumed to be constrained \(|u| \leq 1.5 \)
- The control horizon is \(N = 4 \)
Setpoint change and load disturbances

- In all simulations the setpoint is changed from 0 to 1 at time zero.
- At time 25 a load disturbance passing through the same dynamics as the plant of magnitude -0.25 enters the system.
- At time 50 the disturbance magnitude becomes -1 (which makes the setpoint 1 unreachable).
- Finally at time 75 the disturbance magnitude becomes -0.25 again.

FOPTD system: nominal case

FOPTD system: noisy case

FOPTD system: effect of plant/model mismatch.
Computation time for (complete) enumeration

- The computational burden of CLQ is comparable to that of PID.
- The CPU is a 1.7 GHz Athlon PC running Octave

<table>
<thead>
<tr>
<th>Average CPU time (ms)</th>
<th>Maximum CPU time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>0.05</td>
</tr>
<tr>
<td>CLQ</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Electrical power distribution

MPC at the Large Scale

- Most large-scale systems consist of networks of interconnected/interacting subsystems
 - Chemical plants, electrical power grids, water distribution networks, . . .

- Traditional approach: Decentralized control
 - Wealth of literature from the early 1970’s on improved decentralized control (???)
 - Well-known that poor performance may result if the interconnections are not negligible
MPC at the Large Scale

- Steady increase in available computational power has provided the opportunity for centralized control
- Most practitioners view centralized control of large, networked systems as impractical and unrealistic
 - Centralized control law grows exponentially with system size
 - Difficult to tailor a centralized controller to meet operational objectives
- A divide and conquer strategy is essential for control of large, networked systems
- Centralized control: A benchmark control framework for comparing and assessing other control formulations

Nomenclature: Consider Two Interacting Units

<table>
<thead>
<tr>
<th>Objective functions</th>
<th>(\Phi_1(u_1, u_2), \Phi_2(u_1, u_2)) and (\Phi(u_1, u_2) = w_1 \Phi_1(u_1, u_2) + w_2 \Phi_2(u_1, u_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision variables for units</td>
<td>(u_1 \in \Omega_1, \ u_2 \in \Omega_2)</td>
</tr>
<tr>
<td>Decentralized Control</td>
<td>(\min_{u_1 \in \Omega_1} \Phi_1(u_1), \min_{u_2 \in \Omega_2} \Phi_2(u_2)) (Nash equilibrium)</td>
</tr>
<tr>
<td>Communication-based Control</td>
<td>(\min_{u_1 \in \Omega_1} \Phi_1(u_1, u_2), \min_{u_2 \in \Omega_2} \Phi_2(u_1, u_2)) (Pareto optimal)</td>
</tr>
<tr>
<td>Cooperation-based Control</td>
<td>(\min_{u_1 \in \Omega_1} \Phi(u_1, u_2), \min_{u_2 \in \Omega_2} \Phi(u_1, u_2)) (Pareto optimal)</td>
</tr>
<tr>
<td>Centralized Control</td>
<td>(\min_{u_1, u_2 \in \Omega_1 \times \Omega_2} \Phi(u_1, u_2))</td>
</tr>
</tbody>
</table>

Noninteracting systems

![Noninteracting systems graph](image)

Weakly interacting systems

![Weakly interacting systems graph](image)
Moderately interacting systems

Strongly interacting (conflicting) systems

Strongly interacting (conflicting) systems

Application chemical plant
The conditional density function

For the linear, time invariant model with Gaussian noise,

\[
x(k + 1) = Ax + Bu + Gw \\
y = Cx + v
\]

\[w \sim N(0, Q) \quad v \sim N(0, R) \quad x(0) \sim N(\bar{x}_0, Q_0)\]

We can compute the conditional density function exactly

\[
p_{x|y}(x|y(k-1)) = N(\hat{x}^-, P^-) \quad \text{(before } y(k)\text{)}
\]

\[
p_{x|y}(x|y(k)) = N(\hat{x}, P) \quad \text{(after } y(k)\text{)}
\]

Large \(R\), ignore the measurement, trust the forecast

Medium \(R\), blend the measurement and the forecast
Small R, trust the measurement, override the forecast

Large R, y measures x_1 only

Medium R, y measures x_1 only

Small R, y measures x_1 only
The challenge of nonlinear estimation

Linear Estimation

- **Estimation Possibilities:**
 1. One state is the optimal estimate
 2. Infinitely many states are optimal estimates (unobservable)

Nonlinear Estimation

- **Estimation Possibilities:**
 1. One state is the optimal estimate
 2. Infinitely many states are optimal estimates (unobservable)
 3. Finitely many states are locally optimal estimates

Full information estimate of trajectory

The trajectory of states

\[X(T) := \{ x(0), \ldots, x(T) \} \]

Maximizing the conditional density function

\[
\max_{X(T)} p_{X|Y}(X(T) | Y(T))
\]

Equivalent optimization problem

Using the model and taking logarithms

\[
\min_{X(T)} V_0(x_0) + \sum_{j=1}^{T-1} L_w(w_j) + \sum_{j=0}^{T} L_v(y_j - h(x_j))
\]

subject to \(x(j+1) = F(x, u) + w \)

\[V_0(x) := -\log(p_0(x)) \]
\[L_w(w) := -\log(p_w(w)) \]
\[L_v(v) := -\log(p_v(v)) \]

Arrival cost and moving horizon estimation

Most recent \(N \) states \(X(T - N : T) := \{ x_{T-N}, \ldots, x_T \} \)

Optimization problem

\[
\min_{X(T-N:T)} V_{T-N}(x_{T-N}) + \sum_{j=T-N}^{T-1} L_w(w_j) + \sum_{j=T-N}^{T} L_v(y_j - h(x_j))
\]

subject to \(x(j+1) = F(x, u) + w \).
Arrival cost approximation

The statistically correct choice for the arrival cost is the conditional density of \(x_{T-N} | Y(T-N-1) \)

\[
V_{T-N}(x) = - \log p_{x_{T-N}}(x | Y(T-N-1))
\]

Arrival cost approximations (?)
- uniform prior (and large \(N \))
- EKF covariance formula
- MHE smoothing

Sequential Monte Carlo Sampling

- Represent distribution at time \(k \) via \(N \) samples (or particles), and weights,
 - Particles, \(x^i(T), i = 1, \ldots, N \)
 - Weights, \(q^i(T), i = 1, \ldots, N \)
- Any moment can be approximated as,
 - \(E(f(x(T))) \approx \sum_i^N q^i(T)f(x^i(T)) \)
- Point estimate, Highest Posterior Density regions, etc. may be computed from \(\{x^i(T), q^i(T)\} \)
- Capturing system dynamics and measurements requires efficient algorithm for propagating particles and weights over time,
 - \(\{x^i(T-1), q^i(T-1)\} \longrightarrow \{x^i(T), q^i(T)\} \)
- Combine Sequential Monte Carlo Sampling with Importance Sampling

Particle Filtering Methodology

- A convenient importance function is
 \[
 \pi(x^i(T)|x^i(T-1), y(T)) = p(x(T)|x^i(T-1))
 \]

Conclusions

- MPC is finding new application on small-scale, fast loops as well as large-scale, networked systems.
- State estimation is an integral component of MPC and remains a current research challenge.
- MHE and particle filtering are high-quality solutions for nonlinear models. They require more user experience to set up properly and more computational resources to execute.
 The payoff can be substantial, however.
Future Challenges

- MPC of large-scale systems
 - Develop identification methods for “minimal” modeling of the unit interactions.
 - Exciting applications in many fields!
- State estimation in MPC
 - Process systems are typically unobservable or ill-conditioned, i.e. nearby measurements do not imply nearby states.
 - We must decide on the subset of states to reconstruct from the data – an additional part to the modeling question.
 - Nonlinear systems produce multi-modal densities. We need better solutions for handling these multi-modal densities in real time.

Further Reading I

Acknowledgments

- Aswin Venkat, Murali Rajamani
- John Eaton for table coding advice
- Bhavik Bakshi, Ohio State
- Tom Badgwell, Aspentech
- Financial support from NSF grant #CTS-0456694 and Texas Wisconsin Modeling and Control Consortium (TWMCC) members