James B. Rawlings

Department of Chemical and Biological Engineering
University of Wisconsin–Madison

September 6, 2007
Outline

1. Research group overview

2. Research project opportunities
 - Modeling and control of multi-component, dispersed-phase systems
 - Stochastic methods in chemical reaction engineering
 - New and continuing research projects

3. Closing
The best, quick overview of our research activities is provided by the website: http://jbrwww.che.wisc.edu

The best way to get a feel for what we do is to talk to the graduate students. They are very friendly!
<table>
<thead>
<tr>
<th>PROJECT</th>
<th>RESEARCHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. On-line image processing for particle size and shape distribution</td>
<td>P. Larsen Ph.D.</td>
</tr>
<tr>
<td>2. Multi-scale modeling of solid-phase formation and growth</td>
<td>E. Mastny Ph.D.</td>
</tr>
<tr>
<td>(joint with Prof. dePablo)</td>
<td></td>
</tr>
<tr>
<td>3. Performance monitoring for nonlinear model predictive control</td>
<td>M. Rajamani Ph.D.</td>
</tr>
<tr>
<td>4. Virus modeling</td>
<td>S. Hensel M.S.</td>
</tr>
<tr>
<td>(joint with Prof. Yin)</td>
<td></td>
</tr>
<tr>
<td>5. Octave: computational modeling</td>
<td>J. Eaton Postdoc</td>
</tr>
<tr>
<td>6. Implementing distributed large-scale model predictive control</td>
<td>B. Stewart Ph.D.</td>
</tr>
<tr>
<td>7. Optimizing economic performance with model predictive control</td>
<td>R. Amrit Ph.D.</td>
</tr>
<tr>
<td>8. Data based disturbance modeling</td>
<td>F. Lima Postdoc</td>
</tr>
<tr>
<td>9. Modeling and control of multi-component, dispersed-phase systems</td>
<td>new</td>
</tr>
<tr>
<td>10. Stochastic methods in chemical reaction engineering</td>
<td>new</td>
</tr>
</tbody>
</table>
Challenges for dispersed-phase systems

- **Objectives:** Control size distribution, shape, internal structure, purity.
- **Challenges:** Measurement limitations, Lack of manipulated variables.

Needles, glycine, \(\alpha\) polymorph, glycine, \(\gamma\) polymorph
Population balances and stochastic simulation

Stochastic Solution
Average of 100 Simulations

Deterministic Solution
Via Orthogonal Collocation

Discrete particle sizes
Integer-valued particle accounting

Continuous particle sizes
Real-valued particle accounting
Multi-phase CFD

http://www.uni-magdeburg.de/isut/LSS/Forschung/TOP4/2phaseCFD.gif
Advanced image analysis for needles$^1,^2$

Original image

1Larsen, Rawlings, and Ferrier, ChE Sci, 2006
2Patent filed by WARF, P05340US
Advanced image analysis for needles1,2

Original image

Linear feature detection

1Larsen, Rawlings, and Ferrier, ChE Sci, 2006
2Patent filed by WARF, P05340US
Advanced image analysis for needles1,2

Original image | Linear feature detection | Collinearity identification

1Larsen, Rawlings, and Ferrier, ChE Sci, 2006

2Patent filed by WARF, P05340US
Advanced image analysis for needles1,2

- Original image
- Linear feature detection
- Collinearity identification
- Parallelism identification

1Larsen, Rawlings, and Ferrier, ChE Sci, 2006
2Patent filed by WARF, P05340US
Advanced image analysis for needles1,2

Original image \hspace{2cm} Linear feature detection \hspace{2cm} Collinearity identification

Parallelism identification \hspace{2cm} Cluster properties

1Larsen, Rawlings, and Ferrier, ChE Sci, 2006
2Patent filed by WARF, P05340US
Computer vision for faceted particles3,4

(a) Original image

3Larsen, Rawlings, and Ferrier, ChE Sci, 2007
4Patent filed by WARF, P06449US
Computer vision for faceted particles $^3,^4$

(a) Original image (b) Linear features

3Larsen, Rawlings, and Ferrier, ChE Sci, 2007
4Patent filed by WARF, P06449US
Computer vision for faceted particles 3,4

(a) Original image
(b) Linear features
(c) Salient line group

3Larsen, Rawlings, and Ferrier, ChE Sci, 2007
4Patent filed by WARF, P06449US
Computer vision for faceted particles \(^3,^4\)

(a) Original image
(b) Linear features
(c) Salient line group

(d) Model initialization

\(^3\)Larsen, Rawlings, and Ferrier, ChE Sci, 2007
\(^4\)Patent filed by WARF, P06449US
Computer vision for faceted particles \(^3,^4\)

(a) Original image
(b) Linear features
(c) Salient line group

(d) Model initialization
(e) Further matches

\(^3\)Larsen, Rawlings, and Ferrier, ChE Sci, 2007
\(^4\)Patent filed by WARF, P06449US
Computer vision for faceted particles \(^3,^4\)

(a) Original image
(b) Linear features
(c) Salient line group

(d) Model initialization
(e) Further matches
(f) Optimized Fit

\(^3\)Larsen, Rawlings, and Ferrier, ChE Sci, 2007
\(^4\)Patent filed by WARF, P06449US
Size and shape control with video feedback
On-line process optimization and state estimation

Size distribution measurement uncertainty for 100 images

probability

size class

PSD
Fully-equipped laboratory

High-speed, in situ video imaging (provided by GlaxoSmithKline).

Brand new, $100k, in situ IR spectroscopic probe for multicomponent reaction monitoring (Mettler-Toledo ReactIR iC10)
Stochastic Kinetics

- Small species populations
- Species numbers are integers, reactions cause integer jumps
- Large fluctuations in species numbers and reaction rates
- Biological networks and catalyst particles
Stochastic Kinetics

- Small species populations
- Species numbers are integers, reactions cause integer jumps
- Large fluctuations in species numbers and reaction rates
- Biological networks and catalyst particles

Research objective

Develop reduced models from stochastic chemical reactions. These models must meet the following requirements:

- Simpler than the full model (fewer reactions, fewer parameters, or faster simulation times)
- Converges to the full model as a specified parameter goes to zero
Reactions on small length scales

When reactions depend on features at small length scales:
- random fluctuations may significantly change the production rates.
- mean field closures may not apply.

Catalytic converter

Pt on Al$_2$O$_3$.
2nm particle \approx 7 units cells (40 reaction sites).
Fluctuations due to small particle numbers may
- cause jumps from high to low coverage
- lead to different production rates from different particle sizes
Reactions on small length scales: Virus infection

Simple Viral Infection Model

Virus

Cell

cccDNA

Viral Proteins

Degraded

rcDNA

New Virus

k_1

k_2

k_3

k_4

k_5

Deterministic Average Stoch

Average concentrations of small systems are not necessarily the same as the deterministic evolution.
Reactions on small length scales: Virus infection

Average concentrations of small systems are not necessarily the same as the deterministic evolution.
Stochastic simulation method - Kinetic Monte Carlo

\[A \xrightleftharpoons[k_2]{k_1} B \]

\[k_1 = 2 \quad k_2 = 1 \]

\[n_{A0} = 6 \quad n_{B0} = 3 \]
Stochastic simulation method - Kinetic Monte Carlo

$A \xrightleftharpoons[k_2]{k_1} B$

$k_1 = 2 \quad k_2 = 1$

$n_{A0} = 6 \quad n_{B0} = 3$

KMC Algorithm

1. Choose which reaction

Which reaction:

\[\frac{r_1}{r_1 + r_2} = \frac{12}{12 + 3} \quad \frac{r_2}{r_1 + r_2} = \frac{3}{3 + 12} \]
Stochastic simulation method - Kinetic Monte Carlo

\[A \xrightleftharpoons[k_2]{k_1} B \]

\[k_1 = 2 \quad k_2 = 1 \]

\[n_{A0} = 6 \quad n_{B0} = 3 \]

KMC Algorithm

1. Choose which reaction
2. Choose time step

- Which reaction:
 \[\frac{r_1}{r_1 + r_2} = \frac{12}{12 + 3} \]
 \[\frac{r_2}{r_1 + r_2} = \frac{3}{3 + 12} \]

- Time step: Sample from an exponential distribution where the distribution mean is the sum of reaction rates.
Stochastic simulation method - Kinetic Monte Carlo

\[A \xrightarrow{k_1} B \]
\[k_1 = 2 \quad k_2 = 1 \]
\[n_{A0} = 6 \quad n_{B0} = 3 \]

KMC Algorithm

1. Choose which reaction
2. Choose time step
3. Repeat

\[\text{Which reaction: } \begin{cases}
0 & \text{Random number} \\
1 & \frac{r_1}{r_1+r_2} = \frac{12}{12+3} \\
1 & \frac{r_2}{r_1+r_2} = \frac{3}{3+12}
\end{cases} \]

- Time step: Sample from an exponential distribution where the distribution mean is the sum of reaction rates.
KMC simulations and probability

Multiple KMC simulations, $A \xrightarrow{k_1} \xleftarrow{k_2} B$

$\begin{align*}
\text{time (sec)} & \quad 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\
n_A & \quad 100 & 80 & 60 & 40 & 20 & 0 \\
n_B & \quad 0 & 20 & 40 & 60 & 80 & 100
\end{align*}$

KMC simulations are samples of a probability distribution that evolves in time. We can write the evolution equation for the probability density (master equation).
KMC simulations and probability

- KMC simulations are samples of a probability distribution that evolves in time.
- We can write the evolution equation for the probability density (master equation).
Chemical master equation

\[
\frac{dP(x)}{dt} = \sum_{j=1}^{N_{rxn}} r_j(x - \nu_j)P(x - \nu_j) - r_j(x)P(x)
\]

rate into state \(x \)

rate out of state \(x \)

\[
\frac{dP}{dt} = AP
\]
Chemical master equation

\[
\frac{dP(x)}{dt} = \sum_{j=1}^{N_{rxn}} r_j(x - \nu_j)P(x - \nu_j) - r_j(x)P(x)
\]

rate into state \(x\)
rate out of state \(x\)

\[
\frac{dP}{dt} = AP
\]

Master equation example

- A \(\xrightarrow{k_1} B\) \(\xleftarrow{k_2}\)
- \(n_{A0} = 100, n_{B0} = 0\)
- \(k_1 = 2, k_2 = 1\)
- 101 possible states
- 101 Coupled ODEs
Kinetics of multiple time scales

\[
A \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} B \xrightarrow{k_2} C
\]

Deterministic - One Time Scale

\[
k_1 = 2 \quad k_{-1} = 0.5 \quad k_2 = 0.5
\]

KMC - One Time Scale

\[
k_1 = 2 \quad k_{-1} = 0.5 \quad k_2 = 0.5
\]

One time scale
Kinetics of multiple time scales

\[A \xrightleftharpoons[k_1\backslash k_{-1}]{} B \xrightarrow{k_2} C \]

Deterministic - One Time Scale

\[k_1 = 2, \quad k_{-1} = 0.5, \quad k_2 = 0.5 \]

KMC - One Time Scale

\[k_1 = 2, \quad k_{-1} = 0.5, \quad k_2 = 0.5 \]

Deterministic - Two Time Scales

\[k_1 = 10, \quad k_{-1} = 10, \quad k_2 = 0.5 \]

KMC - Two Time Scales

\[k_1 = 10, \quad k_{-1} = 10, \quad k_2 = 0.5 \]

One time scale

Reaction equilibrium
Kinetics of multiple time scales

\[A \xrightarrow{k_1} B \xrightarrow{k_2} C \]

Deterministic - One Time Scale

\[k_1 = 2 \quad k_{-1} = 0.5 \quad k_2 = 0.5 \]

KMC - One Time Scale

\[k_1 = 2 \quad k_{-1} = 0.5 \quad k_2 = 0.5 \]

Deterministic - Two Time Scales

\[k_1 = 10 \quad k_{-1} = 10 \quad k_2 = 0.5 \]

KMC - Two Time Scales

\[k_1 = 10 \quad k_{-1} = 10 \quad k_2 = 0.5 \]

Deterministic - Two Time Scales

\[k_1 = 2 \quad k_{-1} = 20 \quad k_2 = 20 \]

KMC - Two Time Scales

\[k_1 = 2 \quad k_{-1} = 20 \quad k_2 = 20 \]

One time scale

Reaction equilibrium

Reactive intermediate
Comparison of mechanisms

\[
\begin{align*}
A & \iff 2B \\
B & \rightarrow C
\end{align*}
\]

\[

t_1 = k_1 a, \quad r_{-1} = k_{-1}/2b(b - 1) \\
\quad r_2 = k_2 b
\]
Comparison of mechanisms

\[A \rightleftharpoons 2B \]
\[B \rightarrow C \]
\[r_1 = k_1 a, \quad r_{-1} = k_{-1}/2b(b - 1) \]
\[r_2 = k_2 b \]

Stoch SPA

\[A \rightarrow 2C \]
\[r = \left(\frac{k_1 k_2}{k_{-1}/2 + k_2} \right) a \]
Comparison of mechanisms

\[A \rightleftharpoons 2B \]
\[B \rightarrow C \]
\[r_1 = k_1 a, \quad r_{-1} = k_{-1}/2b(b - 1) \]
\[r_2 = k_2 b \]

Stoch SPA

\[A \rightarrow 2C \]
\[r = \left(\frac{k_1 k_2}{k_{-1}/2 + k_2} \right) a \]

Det SPA

\[A \rightarrow 2C \]
\[r = k_1 a \]
Comparison of mechanisms

\[A \leftrightarrow 2B \]
\[B \rightarrow C \]
\[r_1 = k_1 a, \quad r_{-1} = k_{-1}/2b(b - 1) \]
\[r_2 = k_2 b \]

Stoch SPA

\[A \rightarrow 2C \]
\[r = \left(\frac{k_1 k_2}{k_{-1}/2 + k_2} \right) a \]

Det SPA

\[A \rightarrow 2C \]
\[r = k_1 a \]

Det QSSA

\[A \rightarrow 2C \]
\[r = k_2 \left[-k_2 + \sqrt{k_2^2 + 8k_1 k_{-1}a} \right] \]
\[4k_{-1} \]
Comparison of mechanisms

\[A \iff 2B \]

\[B \rightarrow C \]

\[r_1 = k_1 a, \quad r_{-1} = k_{-1}/2b(b - 1) \]

\[r_2 = k_2 b \]

Stoch SPA

\[A \rightarrow 2C \]

\[r = \left(\frac{k_1 k_2}{k_{-1}/2 + k_2} \right) a \]

Det SPA

\[A \rightarrow 2C \]

\[r = k_1 a \]

Det QSSA

\[A \rightarrow 2C \]

\[r = k_2 \left[-k_2 + \sqrt{k_2^2 + 8k_1 k_{-1} a} \right] \quad \frac{4k_{-1}}{} \]

\[n_{A0} = 25, \quad n_{B0} = 0, \quad n_{C0} = 0 \]

\[k_1 = 1 \]

\[k_{-1} = 1000 \]

\[k_2 = 1000 \]
New and continuing research projects

Opportunities for new MS/PhD students in the following areas

1. Stochastic methods in chemical reaction engineering
 - Systems engineering of stochastic reaction models
 - Model reduction
 - Application to biological systems (joint with Prof. Yin)

2. Modeling and control of multi-component, dispersed-phase systems
 - Modeling particle populations, both stochastic and deterministic methods
 - Modeling particle interaction with fluid flow (joint with Prof. Graham)
 - State estimation and feedback control based on real-time video imaging
 - New measurement: multicomponent reaction monitoring (Mettler-Toledo ReactIR iC10)
New and continuing research projects

Opportunities for new MS/PhD students in the following areas

1. Stochastic methods in chemical reaction engineering
 - systems engineering of stochastic reaction models
 - model reduction
 - application to biological systems (joint with Prof. Yin)
New and continuing research projects

Opportunities for new MS/PhD students in the following areas

1. Stochastic methods in chemical reaction engineering
 - systems engineering of stochastic reaction models
 - model reduction
 - application to biological systems (joint with Prof. Yin)

2. Modeling and control of multi-component, dispersed-phase systems
 - modeling particle populations, both stochastic and deterministic methods
 - modeling particle interaction with fluid flow (joint with Prof. Graham)
 - state estimation and feedback control based on realtime video imaging
 - new measurement: multicomponent reaction monitoring (Mettler-Toledo ReactIR iC10)
<table>
<thead>
<tr>
<th>Student</th>
<th>Organization</th>
<th>Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Eaton</td>
<td>Research Fellow – UW</td>
<td>www.octave.org</td>
</tr>
<tr>
<td>Rolf Findeisen</td>
<td>U. Magdeburg</td>
<td>Academic</td>
</tr>
<tr>
<td>Eric Haseltine</td>
<td>Postdoc, Systems Biology</td>
<td>Academic</td>
</tr>
<tr>
<td>Scott Meadows</td>
<td>U. Alberta</td>
<td>Academic</td>
</tr>
<tr>
<td>Ken Muske</td>
<td>Villanova U.</td>
<td>Academic</td>
</tr>
<tr>
<td>Chris Rao</td>
<td>U. Illinois</td>
<td>Academic</td>
</tr>
<tr>
<td>Walt Witkowski</td>
<td>Sandia</td>
<td>Academic</td>
</tr>
<tr>
<td>Peter Findeisen</td>
<td>Daimler</td>
<td>Automotive</td>
</tr>
<tr>
<td>Andy Fordyce</td>
<td>Novo Nordisk</td>
<td>Biochemical</td>
</tr>
<tr>
<td>Rahul Bindlish</td>
<td>Dow</td>
<td>Chemicals</td>
</tr>
<tr>
<td>Paul Larsen</td>
<td>Dow</td>
<td>Chemicals</td>
</tr>
<tr>
<td>Rock Matthews</td>
<td>Corning</td>
<td>Chemicals, fibers</td>
</tr>
<tr>
<td>Steve Miller</td>
<td>Eastman Chemical</td>
<td>Chemicals</td>
</tr>
<tr>
<td>John Campbell</td>
<td>Aspentech</td>
<td>Control vendor</td>
</tr>
<tr>
<td>Sankash Venkatesh</td>
<td>ZS Associates</td>
<td>Operations Research</td>
</tr>
<tr>
<td>Scott Middlebrooks</td>
<td>ASML</td>
<td>Microelectronics</td>
</tr>
<tr>
<td>Jenny Wang</td>
<td>IBM</td>
<td>Microelectronics</td>
</tr>
<tr>
<td>Wai Man Chan</td>
<td>Shell (Brazil)</td>
<td>Petrochemicals</td>
</tr>
<tr>
<td>Ethan Mastny</td>
<td>BP Alaska</td>
<td>Petrochemicals</td>
</tr>
<tr>
<td>Brian Odelson</td>
<td>BP</td>
<td>Petrochemicals</td>
</tr>
<tr>
<td>Murali Rajamani</td>
<td>BP</td>
<td>Petrochemicals</td>
</tr>
<tr>
<td>Matt Tenny</td>
<td>ExxonMobil</td>
<td>Petrochemicals</td>
</tr>
<tr>
<td>Aswin Venkat</td>
<td>Shell</td>
<td>Petrochemicals</td>
</tr>
<tr>
<td>Dan Patience</td>
<td>GlaxoSmithKline</td>
<td>Pharmaceuticals</td>
</tr>
</tbody>
</table>
Questions?